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We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assump-
tions and approximations made in previous papers. The resulting partial differential equations for the vehicle
density and average velocity contain a nonlocal interaction term which is very favorable for a fast and robust
numerical integration, so that several thousand freeway kilometers can be simulated in real time. The model
parameters can be easily calibrated by means of empirical data. They are directly related to the quantities
characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magni-
tude. Therefore, they allow one to investigate the influences of varying street and weather conditions or
freeway control measures. Simulation results for realistic model parameters are in good agreement with the
diverse nonlinear dynamical phenomena observed in freeway t(@8fi€063-651%99)10501-4

PACS numbgs): 05.70.Fh, 05.66:-k, 47.55—t, 89.40+k

I. INTRODUCTION to a viscosity term and some unexpected but essential high-
density corrections containing spatial derivatives of different
Recently, traffic dynamics has become interesting to a@rders. However, the resulting partial differential equations
rapidly growing community of physicists. This is not only were not very suitable for numerical simulations.
due to its practical implications for optimizing freeway traf- Meanwhile we managed to evaluate the Boltzmann-like
fic, but even more because of the observed nonequilibriur@as-kinetic interaction term exactlgf. Sec. 1l B. Since it
phase transition§l,2] and nonlinear dynamical phenomena turned out that a dynamical variance equatiéi22] is not
like the formation of traffic jamg3,4], stop-and-go traffic Nnecessary for a description of the presently known properties
[5], and synchronized trafficl,6]. It seems that all forms of Of traffic flows, we replaced it by a constitutive relation
congested traffic have almost universal properties which ar&hich—corresponding to a quasiadiabatic approximation—
largely independent of the initial conditions and the spatiallyagrees with the equilibrium variance. The resulting macro-
averaged density, like the characteristic outflow from trafficscopic traffic equations are coupled nonlinear partial differ-
jams of about 1806 200 vehicles per kilometer and lane or ential equations which can be represented in the form of flux
their typical dissolution velocity of about 15+5km per  €quations with a nonlocal and anisotropic source tE28].
hour [7]. This universality arises from the highly correlated For this reason, we can now apply various standard methods
state of motion produced by traffic congestigBs9). for numerical integration. It turns out that the nonlocal term
Whereas classical approaches focused on reproducing th@s similar smoothing properties like a viscosity term, but it
empirically observed flow-density relation and the regime ofdoes not change the hyperbolic character of the partial dif-
unstable traffic flow, recent publications pointed out that it isferential equations to a parabolic one, and it has more favor-
more important to have traffic models which are able to de@ble properties with respect to numerical stability. For this
scribe the observed spectrum of nonlinear phenomena ari@ason, our model allows a robust real-time simulation of
their characteristic propertiel3,5,7,10. We think that it freeway stretches up to several thousand kilometers on a
would be desirable to develop models that are consisterfyPical personal computer.
with both aspects of empirical data. Such models have been Compared to previous macroscopic traffic models, the
proposed lately, including cellular automata model,9]  9as-kinetic-based traffic modéBKT mode) proposed in the
and “microscopic” models of driver-vehicle behavior following takes into account the variance of vehicle veloci-
[12,13, and the macroscopic model discussed in this papeties, which is basically proportional to the square of average
In order to have meaningful and measurable model pavelocity [cf. Eq.(21)], but with a density-dependent prefac-
rameters, we will relate our macroscopic model of freewaytor that determines the exact form of the ﬂOW-denSity rela-
traffic to a “microscopic” model of driver vehicle behavior tion in equilibrium. Moreover, the “optimal velocity” or
via a gas-kinetic derivatiokcf. Sec. 1). Derivations of this  “dynamical equilibrium velocity” V [cf. Eq. (31)], toward
kind have been already proposed in a number of previous/hich the average velocity relaxes, depends not only on the
publications[14—17], but the correct treatment of the most local density but also on the average velocity, and, even
interesting regime of moderate and high densities remainedmore importantly, on the density and average velocity at an
problem. In Refs[18-20, the effect of vehicular space re- “interaction point” which is advanced by about the safe dis-
guirements has been taken into account by a correlation fatcance. Nevertheless, the equations are structurally related to,
tor reflecting the increased interaction rate of vehi¢lesich ~ for example, the Kerner-Konhaer model[3], so that we
can now be derived from simple and plausible arguments, cfind many similar nonlinear phenomena. This includes the
Sec. Il B. In deriving the associated macroscopic equationssequence of stable, linearly unstable, and metastable regimes
different approximations have been suggested, the mo$5,24], the local breakdown effe¢®5], the local cluster ef-
harmless of which was a gradient expandib®,21]. Thisled  fect [5], and the formation of dipole layer4] at suffi-
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TABLE I. Typical parameter values of the GKT model used for satisfying fdt’ fdx’ fdv’ g(t—t',x—x",v—v’)=1, which
the simulations throughout this paper. The values were obtained big |ocalized in a microscopically large and macroscopically

calibration of the model parameters to Dutch freeway data. small neighborhood aroundand in suitable neighborhoods
: aroundt andv. The particular choice df is not relevant for
Parameter Symbol Typical value  the form of the macroscopic equatiof7]. However, the
Desired velocity Vo 110 km/h scale;At, Ax,_andAv are m_eaningful ir_1 that they enter the
Maximum density P 160 vehicles/km effe_ctlve relations for the higher velocity moments like the
Acceleration relaxation time T 35 s variance. . . . . .
: The information specific to vehicular traffic is contained
Time headway T 18 s . . - . L . .
o in the “microscopic” dynamics of individual driver-vehicle
Anticipation factor b% 1.2

units. In the GKT model, we assume the vehicular dynamics
of the form[13,2§

ciently large densities. We also obtain that, in the unstable

traffic regime, the resulting flow-density relation differs from dx,

the equilibrium one(lying below the latter; cf. Fig. P In dat Ve @
addition, we find that the outflow from traffic jams is inde-

pendent of the initial conditions and the spatially averaged

density (cf. Fig. 5. Moreover, the dissolution velocity of dv, U?z_va >

traffic jams varies only a little with densitfcf. Fig. 7). Fi- dt 1, _ﬁm fap- ©)

nally, the gas-kinetic-based model is able to explain the com-

mon phenomenon of sychronized congested traffig], if ) . .
the inflow at on ramps is taken into account. The first term on the right-hand side of E) represents the

It turns out that our model can be easily calibrated to th@cceolergtlon of the driver-vehicle unitto the desired veloc-
static and dynamic properties of traffic flow data by a certain®y v With an adaptation time of,,. On empty roads, this is
systematic proceduref. Sec. Ill D). All parameters have a the only acceleration term. Notice thaﬂ is an intrinsic
clear interpretation, since they are related to quantities chalroperty of the driver-vehicle unit. The second term on the
acterizing the driver vehicle units like desired velocities orfight-hand side of Eq(3) represents the braking interaction
vehicle lengthgcf. Table ). At least some quantities like the Of vehicle « due to slower vehicleg in front. It depends
typical desired velocity or the average time headway are dimainly on the subjective minimum safe time headwayto
rectly measurable. Moreover, the optimal parameters obthe car in front that driveer wants to keep. The details of the
tained from a calibration to empirical data have the expecte®raking interaction will be discussed below.
order of magnitudécf. Table ). Therefore, the model allows ~ In general, the parametes§ and 7, , and the parameters
one to investigate the effect of speed limits, of a larger perof the braking interaction lik& , are different for each indi-
centage of trucks, of bad weather conditions, etc. It will usuvidual vehiclea. This could be respected by generalizifig
ally be sufficient to change the affected parameter valuet a multidimensional phase-space density in a phase space
accordingly, instead of calibrating or even modifying the spanned by the dimensions v, 7, v° etc. This density

whole model for every new situation. would express the probability of finding &t driver-vehicle
unit with velocity v, whose microscopic parameters are
II. MODEL v?, etc. Paveri-Fontana applied this concept to the extra vari-
ablev? alone, formulating an equation f@i(x,v,v°,t) [15],
A. Underlying gas-kinetic equation which was further investigated by Helbifig7] and Wagner

Similar to the gas-kinetic derivation of macroscopic equa-et al- [19]. _
tions for fluids, we start by formulating a kinetic equation for N the GKT model, however, we assume that all devia-
the locally averaged dynamics of driver-vehicles units,tions of the individual driving behavior from that of the “av-
which play the role of the molecules here. The kinetic equa€fage driver” eventually lead to fluctuations of the velocity.

tion describes the evolution of the coarse-grained phasd=0f @ nearly empty road this is obvious. Then the braking
space density term is negligible, and the distribution of vehicle velocities

must converge to that of their desired velocities. In dense

~ , , , , , , traffic, there are additional sources of velocity fluctuations.
p(X,v,t)ZZa fdt fdx fdv g(t—t',x=x",v—v") The time when vehiclex starts to brake in response to a
slower vehicle in front depends on the individual safe time

X (X" =X (1))@ —v (1)), (1) headwayT ,. Obviously, drivera brakes later for lower val-

ues of T,. Thus differentT,, lead to different velocities,
denoting the probability density of finding, at a given titne even ifall other parameters of the vehicléa particular the
a vehiclea at positionx, with velocityv, . In more intuitive  desired velocitiesand all initial conditions are unchanged.
terms,p corresponds to the spatial density of vehicles perdn addition, imperfect driving behavior such as delayed ac-
lane times their velocity distribution. Since the GKT model celeration or overbraking.e., braking more than necessary
is an effectively one-lane model where lane changes anih a given situation contributes to the velocity fluctuations
overtaking are only implicitly taken into account, there is no[18].
lane index. The coarse graining is performed by taking local If we are not interested in microscopic details, such fluc-
averages over a weighting functia(t—t',x—x",v—v"') tuations can be described in a global way by a fluctuating
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force in the acceleration equatid8), in analogy to hydro-
dynamic fluctuation$29]. Thus we approximate E@3) by

dl)a_VO_Ua
dt 7

— > Tapt&alD), (4)
B+ a

whereVy=(v2):=(1/N)= v° and 1/=(1/7,) are the aver-
aged microscopic parameters of the acceleration t&tmie-
notes the total number of vehicledhe braking ternf ,z is
formulated with averaged parameters like=(T,) as well.
The fluctuating forceg,(t) obey

(€a(1))=0, (&, (1)E4(t"))=2D5,p0(t—t"). ()
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wherel = 1/p ax (With maximum density,,,,) is the average
vehicle length plus the bumper-to-bumper distance kept in
standing traffic, andy is an average anticipation factor with
typical values between 1.0 and 3.0. In the limit of congested
traffic, the interaction point ig vehicle positions in front of
the actual vehicle positior Notice that, in the limit of con-
gested traffic and fory=1, assumption(i) corresponds to
classical car-following models$30,10,28,13 (ii) In the light

of a mean-field ansatz, the traffic situation at the interaction
point can be described by the density and the velocity distri-
butions at this place, i.e., by the phase-space density
p(Xa,v,t). (iii) There is a certain percentagp(p,)
=1/x(p,) of interaction-free space that allows drivers to ap-
proach the respective car in front before they brake. This

The fluctuation strengtB® will be determined empirically by percentage is a decreasing function of the average density
comparing the resulting velocity variance with that obtainedp = fdv B(X4,v,t) at the interaction point witp(0)=1
from single-vehicle data; see below. For low traffic densitiesa;dp(pmax):ad_ "I'his is determined by the condition that’ in

where the interactions can be neglected, E¢s.and (5)
compose an ordinary stochastic differential equatiorvfpr

In the stationary limit, this leads to the distribution function

w(v,)=(27Dp) ! exd—(v,—Vo)%(2D7)]. This means

homogeneous dense traffic, the vehicles follow each other
with a time headway of. Furthermore, we assume that the
probability of undelayed overtaking by lane changing is
given byp as well[31]. Notice that the factogx= 1/p can be

that, in the low-density limit of negligible interactions, jnerpreted as the increase of the interaction rate due to the

the fluctuating strengt® of the fluctuating forceg5) is re-
lated to the velocity variancé={((v,—Vy)?) by =D~
(fluctuation-dissipation relation In Sec. Il B, it will be

finite space requirements and positional correlations of ve-
hicles, compared to pointlike objecf48—20,28. (iv) If a
driver is faster than the velocity, at the interaction point,

shown that this relation holds for stationary traffic at all den-5,,4 if he cannot overtake by lane changfmgnich happens

sities.

Equations(4) with (5) represent a microscopic traffic
model on their own. It remains, however, to specify the “mi-

croscopic” braking interactionst_aﬁ. In real traffic, these

with probability (1-p)], he reduces his velocity abruptly to
v, as soon as the distance to the interaction p@imbving
with velocity v ;) has decreased by his shat&;..= p/p, of
the interaction-free spad@2]. (1/p, is the average center-

interactions depend in a complicated manner on the owfo-center distance between two vehiclexgt

velocity, and on the distances and velocities of the vehicles Now we formulate the kinetic equation underlying the
in front. To formulate reasonable assumptions for the GKTGKT model. Taking the time derivative of definitial) of
model, we will use averaged quantities like the densitythe phase-space density, and inserting the microscopic equa-
p(x,t)=[dvip(x,v,t), which is justified since we want to tions (2) and (4), gives, by partial integration, the kinetic
derive a macroscopic model. As a consequence, however,&yolution equation for the phase-space den€8],

simple purely microscopic equivalent of the GKT model ex-

ists only in some special cases.

Specifically, we make the following simplifying assump-
tions: (i) A driver at positionx reacts to the traffic situation at

2

J o
:%(pfint)“'ﬁ(PD)v

~ Vo—v
P

B0 0
Ea_x(f’”)g

the advanced “interaction point” (7)

Xa=X+vy(1+Tv), (6)  where the interaction term has the general form

|
fi=p 12 > fdt’fdx’fdv’g(t—t’,x—x’,v—v’)f_aﬁé(x’—xa(t))é(v’—va(t)). (8)
a B(#a)
|
The E)ur assumptions for the microscopic braking inter- . 5 o
actionsf,z directly result in a Boltzmann-like interaction I(X’U't):fv,>vdv (v =v)p(X,v" Up(Xa,v,)
with a density-dependent prefactB(p):
—f dv’(v—v")p(X,v,t)p(X5,0",1).
v’ <v
J

75 (PTind =P(p)Z(x,0,1) C) (10)

with

The first term of Eq(10) describes the increase of the phase-
space densitp(x,v,t) due to the deceleration of faster ve-
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hicles with velocityv ' >v which cannot overtake vehicles at density and average velocity. Second, we assume that the
X, driving with velocity v, whereas the second term delin- phase-space density is locally associated with a Gaussian ve-
eates the decrease of the phase-space density due to dedetity distribution

erations of vehicles driving witly which cannot overtake

slower vehicles ak, driving with v’ <v. The prefactor e [0 VeRDT20(x0)]

ﬁ(xivit):p(xit) m

This is well compatible with empirical velocity distributions
. . . . obtained from single-vehicle dafa8,33, at least if the per-
is proportional to the probability (4 p) that one cannot im- centage of trucks is negligibl@4]. Ansatz(16) is also con-

mediately overtake a slower vehicle, and to the Cmmlatmrlqistent with the fluctuating foro) in the microscopic equa-

factor y= 1/p describing the increased interaction rate due mtion (4). A more general ansatz taking into account small

Vekllrllcglljaér?]%?cetrr]iqlgilri?cenﬁia.se-s ace equation Upon WhiCHeviations from local equilibrium can be found in RE22].
Y P P q P Multiplying the phase-space equatioh?) with 1 or v,

the GKT model is based is given by respectively, and integrating over leads, after straightfor-

(16)

1
P(p)=(1-p)x= 5—1 (11

p a9 9 Vo—v ward but lengthy calculations, to

ot T ax (POt oo {73 .
%> APV, (17)
ot IX '

{

f , dv'(v'—v)p(X,v" ,1)p(Xs,v,t)

PR 19(pf) Vo—V
(EJ’V@_XVZ__%“LOT
—f do’ (v—0"YB(X,0,0)P(Xa,0" 1) p
v'<v
P(pa)pal 0+ 03)
7 -—— B, (18

+-,2 (D). (12)
where we used the notatiorfi (x,t)=f(x,,t) with f

For y=1 and for dense traffic, the underlying micro- €{p,V,6}. It turned out that the approximation of the sum
scopic dynamics is that of a microscopic, stochastic car{f+ 6a)/2~ 6 leads only to negligible quantitative changes
following model. In this case, traffic behaves like a one-[35]- On the other hand, the approximation simplifies the
dimensional gas of inelastic hard “vehicular molecules” Velocity equation considerably, so we will adopt it hence-
with anisotropic interactions whose effective sizes vary withforth. The monotonically increasing macroscopic interaction
the local density such that there is a spdog..dp,) be- term
tween the molecules.

e 92 e V22

Sy
oy —+(1+8 f d
\% \/ﬂ ( V) w y \/ﬂ
Following the standard procedure summarized in Refs.

[28, 18, from the kinetic equatior{12) we derive macro- describes the dependence of the braking interaction on the
scopic equations for the lowest velocity moments. In particudimensionless velocity - differencesy=(V—Va)/V0+0,.
lar, we are interested in the dynamics of the macroscopi€0r ¥=1, the macroscopic interaction term can be easily

vehicle densityp(x,t) per lane and the average velocity understood by the underlying microscopic dynamics of the
V(x,t) defined by GKT model. If a vehicle at locatiox with velocity v is

faster than one at, with velocity v, (i.e., Sv=—v,>0), it
S approaches the car in front within the timdd= AX./ dv,
p(X,1) = J; dv B(x,v,1), (13 \where Ax;o..=p/p, is the average interaction-free distance
AXqee=p/p, Of a car. Then, if it cannot overtake immedi-
o ately, which would happen with probability (1p), it
V(x,t)E<v>=p*1J dv vp(X,v,t). (14)  abruptly reduces the velocity hjv. The resulting ensemble-
0 averaged deceleration is

B(dy)=2 (19

B. Derivation of the basic equations

As usual, one obtains an infinite hierarchy of equations (1-p)
where that for theath moment depends on tha{ 1)st mo- (SvlAt)=—
ment. In particular, the macroscopic density equation de-

pends orV, and the macroscopic equation féron the vari- _ .
ance If v andv 4 are uncorrelated and Gaussian distributefdEq.

(16)], with expectation value¥ andV, and variance® and
0, , respectively, the distribution function(év) of the ve-
9(X:t)5<(U—V)2>=P71J' dv(v=V)?p(x,v,t). (15  |ocity difference is also a Gaussian, with expectation value
V—-V,=6+ 0,6y and variance §+ 6,). Evaluating inte-
In the GKT model, we close the hierarchy by two assump-gral (20) yields (Sv/At)=—3Pp.(0+ 6,)B(d), i.e., the
tions. First, we assume that the variantés a function of  macroscopic braking term in E¢L8).

pafxd(5v)(5v)zw(5v). (20)
0
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The assumption of a Gaussian velocity distribution alondtion: The rate of encountering a slower vehicle is propor-
would close the system after the variance equation, whictional to p. Furthermore, the probability that one cannot
can also be derived from the kinetic equatidr?) [22,23. overtake immediately by lane changing when a slower ve-
Since a dynamic variance equation is not necessary for thieicle is encountered, is proportional gaas well, resulting in
description of known traffic instabilities, we close the systema proportionality top? at low densities. The interpretation of
already after the velocity equation and assume for the varip=(P+ 1)~ ! as the percentageA x;, of free space is also
ance the local equilibrium valug= D r of the variance equa- consistent for both limiting cases. F@— pya, One has
tion [22,23. Notice that this relation for the variance is the Axpee—0. For plphx<l, one obtains AXqee— AX
same relation as derived in Sec. Il A for low densities. =V,T?/(7A,). This means that vehicles on a nearly empty

To complete the derivation of the GKT equations, weroad would react to other vehicles in frofthostly by lane
have to specify the “constitutive relation” for the quasiadia- changing, if these vehicles were closer thafyT?/(7A,).
batically eliminated variance as a function @ndV, and  This is the net safety distandg, T times a factorT/(Ag7)
the relation for the dimensionless correlation prefa&tp). that is of order unity(see Table)l
The empirical data suggest that the variatared thuD) is a
density-dependent fractiofi(p) of the squared velocity, C. Discussion of the model

0=A(p)V?, (21) For convenience, let us summarize the equations of the
GKT model. The traffic density and average velocity evolve,
and that the variance prefactéris higher in congested traf- in the absence of on and off ramps according to
fic than in free traffic. For qualitative consideratiodscan

be chosen to be constant. In the following, however, we ap- &_p+ (pV) _ 27
proximate the empirical data by the Fermi function at X '

_ 2 _

A(p)=Ag+AA tanl'(pApc +1), 22) 9y Ly LAAVY) VooV
p ot IX p  OX T

whereA, andAy+ 2AA are about the variance prefactors for VoA(p) paTV 2
free and congested traffic, respectively,is of the order of T A \ 1= padp B(ov),
the critical density for the transition from free to congested ma arhma
traffic, andAp denotes the width of the transition. (28

Now, we determine the correlation functi®{p) by im- o o
posing that the time headways in dense, homogeneous traffth€reB(dy), is given by Eq.(19). (For a generalization to

are given byT. Solving Eq.(18) for stationary and homoge- ¢ases with on and off ramps see REZ6].) A(p) is the
neous traffic of density leads to the equilibrium velocity- measured or assumed variance in units of the squared veloc-

density relation ity, for which we use relatiori22) throughout this paper.
The density equatiof27) is just a one-dimensional con-
ay2\ 12 tinuity equation reflecting the conservation of the number of
0 ] , (23)  vehicles. Thus the temporal change 5t of the vehicle den-
sity is just given by the negative gradientdQ/dx of the
lane-averaged traffic flo@=pV.
with The first term on the right-hand side of E@®8) is the
2 gradient of the “traffic pressure’pd=pAV2. It describes
Y :( Vo ) (24) the kinematic dispersion of the macroscopic velocity in in-
7pA(p)P(p) homogeneous traffic as a consequence of the finite velocity
) ) o ] variance. For example, the macroscopic velocity in front of a
This also determines the equilibrium traffic flow per lane bysmall vehicle cluster will increaseven if no individual ve-
hicle acceleratesbecause the faster cars will leave the clus-
Qe(p)=pVelp). (29 ter behind. The kinematic dispersion also leads to a smooth

. ; s - - density profile at the dissolution front between congested
In_the limit of h|gh~densmes, (ip/pmax)<_1 (Or Ve<Vo), traffic and an empty road, as it occurs when a road blockage
this reduces t/,=V. On the other hand, time headwgys of at Xg is removed at a timé&,. In this case, the first vehicles
Tand average gaps 6f (1/p— 1lpmay between the vehicles  .on 5| accelerate to their respective desired velocities. Thus,
correspond to a velocity't(p) =S/T=(1p—Upma)/T. D&~ 4fier sufficiently long times, the high-speed tail of the distri-
mandingV,=Vr for high densities leads to bution of desired velocities translates into a distribution of
) vehicle positions.
VopT (26) The second term of Eq28) denotes the acceleration to-
TA(pmax)(l_P/Pmax)ZI ward the(traffic-independentaverage desired velocity, of

the drivers with a relaxation time Individual variations of

This expression is also consistent in the other limit of homothe desired velocity are accounted for by the finite velocity
geneous traffic with very low density. With E@26), the  variance.
macroscopic braking term-Pp6 of Eq. (18) for homoge- The third term of Eq(28) models braking in response to
neous traffic is proportional tp?, in accordance with intu- the traffic situation at the advanced “interaction point}

VZ
\Y =—|-1=x
e(P) 2V,

P(p)=
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=X+ Y LpmaxtTV). The braking deceleration increases 0.08 T Erom T
. . . mpirical Data  +

Coulomb-like with decreasing gap @/~ 1/pmsy) to the car < @ Fit Function

in front (1/p, being the average distance between successive = 006 [ . 3 1
vehicle positions and p/,.x the minimum vehicle distange g A s

In homogeneous dense traffic, the acceleration and braking £ o004t Va'ik i
terms compensate for each other at about the safe distance. 8 * .

In general, the deceleration tendency also depends on the .g 002 | . |
velocity difference to the traffic at the interaction point, char- > N

acterized by the “Boltzmann factorB(éy). In homoge- o . )

neous traffic, we hav8(0)=1. In the limiting cases,>0 0 0 20 0 T60
(where the preceding cars are much slowérfollows that

2 . . Homogeneous Density (vehicles/km)
B(8y)=26y. If, in contrast, the preceding cars are much

faster (i.e., 6,<<0), we haveB(4y,)~0. That is, since the 2400 r T
distance is increasing, then the vehicle will not brake, even if ®) Bt Function
its headway is smaller than the safe distance. 1800 | ]

The main difference with respect to other macroscopic
traffic models is the nonlocal character of the braking term,
which we obtained by derivation from realistic assumptions
of driving behavior. The nonlocality has very favorable prop-
erties with respect to the robustness of numerical integration
methods and their integration speed. It has smoothing prop-
erties like the viscosity term used in the Kerner-Konser 0 ' ' .

; ) ) . : 0 40 80 120 160
model[3,5], but its effect is anisotropic. There is no smooth- ) )
ing in the forward direction, which would imply that cars Homogeneous Density (vehicles/km)

Wou'ld react on density or velocity gradients of the vehicles Fig. 1. Comparison ofa) the density-dependent relative vari-
behind them. ance in units of the squared average velocity, émdthe equilib-
The GKT model fits into the general class of macroscopiGium flow-density relation25) in the GKT model(solid lineg with
traffic modeld 18,28 defined by the continuity equatid®7)  empirical data(crosses The empirical data were obtained from
and the velocity equation single-vehicle data of the Dutch motorw#® by averaging over
one-minute interval¢see main text

1200 1

h o

Q (vehicles/h)

‘9+vﬁv— 1(9P+1\7 V,ps,Va)—V
VST o ;[ e(p.V,pa,Va) — VI

distance 14,,,, of two cars in standing traffic must be con-

(29 sistent with the average length of the vehicles plus a minimal

] o bumper-to-bumper distance kept, which is about 1.5 m. As

In the GKT model, the “traffic pressure’P is given by real traffic is stable at very low and very high densities, the

5 above procedure of comparing the measured data in these

P=p0=pA(p)V7, (30) density ranges with thequilibriumcurve of the GKT model

is justified. At intermediate densities, the equilibrium curve

of the model lies somewhat above the défay. 1). How-

ever, in Sec. Il it will be shown that homogeneous traffic is

unstable in this density range, and that the averatyedmic

and the “dynamical equilibrium velocity,” toward which the
average velocity relaxes in the actual traffic situation, is

Ve(p,V.pa:Va) traffic flow in the GKT model is below the equilibrium curve
A(P) paTV 2 as well. o .
=Vg| 1—- oA =07 B(dy) |- The remaining parametersand y can be systematically
(Pmax) PalPma calibrated by means of the dynamic properties. This will be

(31) discussed in Sec. IV. Table | lists the numerical values re-
. _ sulting from a fit to traffic data of the Dutch motorway A9. If
In contrast to other macroscopic modg3$,16,3 belonging  not stated otherwise, we used these values in the numerical

to the class defined by E¢R9), the “dynamical equilibrium  simulations of Sec. lll, referring to them as the “standard
velocity” depends orp and V attwo different locations, thus parameter set.”
introducing the nonlocality. Notice that all parameters have realistic values. In particu-

The five parameters of the GKT model, listed in Table I,lar, this holds forr which, for Vy=158 km/h, would have
are all intuitive. Three of themY,, T, and pna, Can be the meaning of the acceleration time from 0 to 100 km/h.
directly determined by fitting the equilibrium flow density FurthermoreV,/r is limited to the average maximum accel-
relation (25) of the GKT model to measured flow-density eration of vehicles on a free road starting with zero velocity.
data, cf. Fig. 1. The desired velocily, is determined by For these reasons, a relaxation time 35 s is sensible for
fitting the data at low densities by a straight lif@(p) freeway traffic.(For city traffic, 7 is shortey.
=Vgp. The safe time headwal and the maximum density ~ The valueT=1.8 s for the safe time headway is consis-
Pmax @re determined by fitting the data at high densities by aent with the rule “distanc&in m) should not be less than
straight line crossing the abscissamt.,, and identifying  half the velocity(in km/h)” suggested by German authori-
this line with Q(p)=(1—p/pmad/T. The ensuing average ties. For other data, however, we often find that a somewhat
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smaller time headway gives a better fit.
Since the model parameters are meaningful, it is simple to
model changes of the traffic dynamics caused by external

Tv L= 2 L e+ v v
g g _?W(p )+ (Vo )

effects like environmental influences. For example, a speed (piV')?

limit would be considered by decreasiivy. Bad weather —P'A'(p") 1=p 2 B(ov),
conditions leading to more defensive driving would be char- Pa

acterized by an increased time headwagnd a lower value (33

of V, (plus a reduction ofy, if there is heavy fog In rush-
hour traffic, it is plausible to assume a higher percentage owvhere
experienced drivers than in holiday traffic, which would cor-

respond to a highey. Effects like a varying distribution of o Apmap’)

vehicle types can be model as well. For example, a higher A'lp7)= A(pmax) (39
proportion of trucks would lead to a decrease\4f and

Pmax, but also to an increased value of is of order unity, and the Boltzmann terB(é,) [i.e., Eq.

Finally, we compare the macroscopic GKT model with (19) in scaled variabldsremains unchanged. The remaining

direct simulations of microscopic models of for). While  dimensionless parameters are the scaled desired velocity
the microscopic model is stochastic, the deterministic GKT

model includes the stochasticity of real traffic by the consti- Vo= pmaxVo (35)
tutive relation(21) for the velocity variance. Therefore, the

GKT model describesnacroscopiceffects of fluctuations 5nd the scaled cross section

like kinematic dispersion. The additional information of in-

dividual fluctuations contained in microscopic models seems PraVoT? ,(T) 2

not to be of practical relevance, since empirical traffic data P'=——=V, (36)

are typically available as 1-min averages, i.e., in terms of T
macroscopic quantities.

In contrast to microscopic models, the GKT model is an X
effectively one-lane model and treats overtaking and the agguations. , ) i
sociated lane-changing manoeuvers in an overall way. A mi- 1n€ parameteV, with a numerical value of 171.4 for
croscopic model would need additional assumptions and neff’® Standard parameter set, has some analogies to the
parameters for the lane-changing decisions as well as addR€Yynolds number in the Navier-Stokes equations for normal
tional assumptions about the population of vehicles, e.g., thuids. Assuming that typical velocities are proportional to
distribution of desired velocities. Moreover, the macroscopidh€ desired velocities, typical densities proportionab gy,
model can be generalized to simulate on ramps, off ramp&nd typical length scales proportional tg 4y, this can be
and lane closings, simply by adding source and sink terms t§¢€n Dy observing that the magnitude of the destabilizing
the macroscopic density and velocity equati@® and(28) _advect|or_1, pressure, and b_raklng termszm th(_e unscaled yeloc—
[25,26. In microscopic models this would require the treat-ity equation(28) is proportional topmaV, While the stabi-
ment of lane changes from dead-end lanes, which is a palzing relaxation term is proportional t¥,/7. So, the ratio
ticularly difficult problem. between the destabilizing “kinetic” terms and the stabilizing

Finally, apart from very low densities, the numeric per-relaxation term is proportional tpy,,,Vom=V,. As will be
formance of simulations with the GKT model is far superior shown in Sec. Ill B, homogeneous traffic can become un-
to corresponding microscopic simulations. This is achievedtable, if a certain “critical” valueV is exceeded.
partly by using lookup tables for the functio®sp) and The scaled cross sectidd’, with a numerical value of
B(4y) and by applying explicit integration schem&]. In  0.453 for the standard parameter set, gives the ratio between
addition, the GKT model has only one density and velocitythe interaction term and the kinetic advection and pressure
field variable, and its computational speéaieasured in terms. In analogy to the Prandtl number of thermal convec-
terms of the length of the road sections that can be simulatetion in a simple fluid heated from belof@8], it depends on
real time is independent of the density and the number ofthe ratio of the two relevant time scal&sand 7 of the sys-

in addition to the anticipation factoy from the unscaled

lanes. tem.
As in the unscaled equations, the paramet@haracter-
D. Dimensionless form of the GKT equations izes the sensitivity in the braking interactions to spatial

: - . . changes of the velocity, compared to the sensitivity for
By reformulating the GKT model in dimensionless vari- changes of the density.

ables, the number of model parameters can be reduced by
two. We measure times in units efand distances in units of
1pmax DY introducingt’ =t/ 7 andx’ = p,,.,X. The dependent . RESULTS

: 2
variablesp’ =p/pmax, V' =V7pmax, 0’ =07°ph., €tC. are A. Homogeneous traffic

scaled accordingly. This leads to the scaled GKT equations i i )
In homogeneous and stationary traffic, the GKT equations

ap'  dp'V") (27) and (28) reduce top=const. and relatiori23) for the
O (320 equilibrium velocityV4(p). Notice thatVe(p) and thus the
equilibrium flow Q.= pV¢(p) is a function of the model pa-

and rametersvy, T, andpnax, but does not depend onand y.
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We determined the constants in relati@?2) for the vari- 2400 T ——
ance prefactoA(p) and the model parametekg, T, and 7 V=110 kmh ——
Pmax. DY fitting them to empirical data of the Dutch two-lane ~ 1800} A R Vo=130 kmvh ------
motorway A9 from Haarlem to Amsterdam. The empirical % 47
data are based on one-minute values for the numbef 2 1200 I
passing vehicles, their average velocky, and velocity Z "/
variance 6;, which were determined from single-vehicle © o0 | ]
data. The corresponding flow is then given Qy=n./2 per @
minute and lane, and the density per lane@yV,. Such 0 L . .
sets of 1-min values were sampled over two periods from 40 80 120 160
Monday to Friday(October 10, 1994 through October 14, p (vehicles/km)
1994 and October 31, 1994 through November 4, 1964 3000
the right and left lanes at nine subsequent measuring cross ',\' i Te1.0§ ————-
sectiongdistributed over a stretch of 8.6-km length; see Ref. 2400 / ‘\ T-1.8s
; ; ; L s F N T=2.6s ===~
[39] for an illustratior). To obtain empirical quantities as a g K .
function of density, we averaged over all sets with a density A T 1
betweenp— Ap andp+ Ap with Ap=1 vehicle/km. 5 ’ .
Figure Xa) shows the variance prefactor E§2) for the g 1200 1 ) N
fitted values oo b/ TS \\ |
O ~
pc=0.27pmax; 0 () . | N
40 80 120 160
A p= O-OEpmaw p (vehicles’km)
3
Ao:0.008, ( 7) 2400 ' pmax=14(')veh@cles/k'm -----
s\ Pra=160 vehicles’km ——mmm
1800 N\ % Pmay=180 vehicles/km -« ---- -
AA=25A,. 2 A\
2 1200 | AN
Throughout the paper, we will use these values. 2 RN
Figure Xb) depicts the flow-density relation for the fitted Y w0 IRNGNG . |
values ofVg, T, and pnax given in Table I. These values ‘\\ N
resulted from the systematic procedure described in Sec. o © . . SN
[l D. Both the empirical variance-density relation and the 40 80 120 160
flow-density relation are well reproduced by introducionmge p (vehicles/km)
fit function A(p) only. With a constant value fok, the sharp
increase of the variance prefactor at a density of about 40 3500 " Hien Porentaze of Tracks ——om-
. . igh Percentage of Trucks
vehicles/km and the sharp decrease of the velocity related to 3000 | Standard Parameter Set
it could not be obtained by variation &fy, T, and ppax- = 2500 Commuters ===---
Rather, this correlation is an intrinsic property of the model, 2 200l i
and follows from the proportionality of the braking interac- 2 H
tion to the variance. Notice that the deviation of the assumed 2 150 :'I/ AN 1
variance prefactor from the data at very low densities could < 1000 [f "\\\ el ]
be easily removed by a more complicated functidtp). 500 -'(d) \\\
However, this correction would not impair the flow-density 0 ' : . N SR
relation, because the interaction is negligible for these den- 3 6 90 120 150 180
sities. For the same reason, the correction would not change p (vehicles’km)

the dynamics, justifying the choice of the simple functional

FIG. 2. Equilibrium flow-density relations of the GKT model.
Diagrams(a) through(c) show the variation with the model param-
etersVy, T, andpnax- In each diagram, the solid lines correspond
to the standard parameter set displayed in Table |. Diagidm
shows parameter combinations as one would expect for, e.g., an
increased percentage of truckg,=80 km/h, T=1.8s, andp .«
=140 vehicles/kmy or a decreased percentaé,=140 km/h, T
=1.4s, ando,,=180 vehicles/km

dependencé22).

In the plots of Fig. 2, the resulting equilibrium flo@,
=pV(p) is plotted as a function of the density for various
values of the model parametevy, T, andpax- The solid
lines in plots 2a)—2(d) show the result for the standard pa-
rameter set of Table I.

Figures Za) and 2b) illustrate that, according to our
model, traffic flow will increase with growing desired veloc-
ity Vo and with decreasing safe time headways expected.
The desired velocity/y mainly influences the low-density
regime, whileT is relevant for high densities. This is also low), this has practical implications. A variable speed limit,
underlined by Figs. @) and 3b), which show the equilib- which is active only above a certain density threshold, would
rium velocity for the same parameters. As expected, a redudncrease the stability without reducing the capacity of the
tion of V (e.g., caused by a speed limit or an uphill gradient road.

influences traffic only at low densities. Since a reduction of
V, increases the stability of homogeneous trafiee be-
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140 ' " V= 90kmh - ®
120 . 0 p (vehicles/km)
100
=
80
‘E’ 60
>

120
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V (knvh)
2

0 40 80 120 160
p (vehicles/km)

FIG. 3. Variation of the equilibrium velocity-density relation of
the GKT model with(a) the desired velocity,, and(b) the safe
time headwayT. The other parameters have the standard values
displayed in Table I.

@
p (vehicles/km)

The changes of traffic flow resulting from variations of %0

Pmax are plausible as wellFig. 2(c)]. Decreasingomax O,

equivalently, increasing the average vehicle lengtbrre- 60
sponding to a higher percentage of truckeduces the maxi- 40 15
mum flow (capacity of the road. Of course, a higher propor- 20
tion of trucks also leads to a lower desired velocity. These 0 t (min)
combined effects are shown in Figid2
x (km) 0
B. Stability of homogeneous traffic with respect FIG. 4. Spatiotemporal evolution of traffic on a unidirectional
to a localized perturbation ring of circumference 10 km, starting with initially homogeneous

. o . traffic (of densityp) to which a localized perturbation of amplitude
The ho_mogen_eous and s_tatlonary equilibrium SOIUtlonAp=10 vehicles/km is added in accordance with B8). (a) is for
(23) investigated in Sec. lll A is not always stable. Here we;— 15 yehicles/km(linearly stablg, (b) and (c) are for unstable
consider its stability with respect to a localized perturbation asfic (p=25 vehicles/km and 35 vehicles/kmand(d) is for stable
in the initial conditions. Specifically, we assume a dipolelikecongested traffi¢55 vehicles/km The model parameters are given

initial variation of the average densipyaccording to by the standard set displayed in Table I.
p(x,0)=p+Ap| cosh 2 X_fo Gauss'ian perturbation of thg average veltjo'vtrgre, affter a
w short time, transformed to dipolelike perturbations similar to
N that of Eq.(38). The simulations were carried out with ex-
W cosh‘2( X_XO_AXO) ’ (39  plicit finite-difference method41].
w Figure 4 shows the spatiotemporal evolution of the initial

perturbation38) with A p= 10 vehicles/km for various initial
as suggested in Ref40]. The positive and negative peaks densities. In Fig. @), it is shown that the perturbation dis-
are positioned ak, and xy+AX,, respectively, withAx,  sipates if the traffic density is sufficiently low. When increas-
=1006.25 m, and they have the widtig =201.25 m, and ing the initial density, perturbations eventually lead to insta-
w~ =805 m, respectively. The amplitudg of the perturba- bilities. Depending on the density, a single density cluster
tion will be varied in the simulations. The initial flow [cf. Fig. 4b)], or a cascade of traffic jam(e., stop-and-go
Q(x,0)=Q.(p(x,0)) is assumed to be in local equilibrium traffic) [Fig. 4(c)] is triggered. If one further increases the
everywhere. Our simulations showed that the specific shapgensity, we observed dipolelike structures similarly to those
of the perturbation is not relevant. Moreover, localized per-described in Ref[24]. Finally, for densities above 50-55
turbations of a different fornfe.g., a constant density plus a vehicles/km, one again reaches a stable redifig 4(d)].
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The underlying instability mechanism is intuitiyg]. In 90 T T
perturbation(38), the positive density peakwith a lower (a)
velocity than in the homogeneous regipris behind the 70 |
negative peakwith higher velocity. This means that drivers
in the region upstream of the perturbation will approach the
positive peak. If the traffic density is sufficiently low, the
vehicles can overtake by lane changing without braking, as
soon as they meet the tail of the perturbation. In addition, the
perturbation dissolves by the above described effect of kine- . Pout
matic dispersion. As a result, homogeneous traffic is stable at 1015 30 45 60
low densities. For higher densities, however, a higher per-
centage of drivers approaching the density peak must brake,
thereby locally increasing the density. The increased density, 90

Perturbation
Amplitudes
(vehicles/km):

sol !

30 | S 20 --e---

Density (vehicles/km)

Homogeneous Density (vehicles’km)

e

in turn, gives a positive feedback for further braking reac- ®) o:
. + Fam

tions. This feedback cycle continues until the resulting ve-
locity is so low that the acceleration term compensates the
braking effects. This defines the jammed density pjam
with nonzero flow Q=Qg¢(pjam). Furthermore, it makes
plausible that homogeneous traffic of densfiy pjam is
stable again.

An important criterion for realistic traffic models is that
the transition to these inhomogeneous states should be hys-
teretic, corresponding to a first-order phase transifioh

Density (vehicles/km)

This implies that, at least in some parameter range, the re- Homogeneous Density (vehicles/km)
sponse of the system to localized perturbation depends on the
perturbation amplitudébistability). In terms of real traffic, FIG. 5. Stability diagram for perturbations of homogeneous traf-

there are situations where traffic flow is metastable with refic of form (38) in a ring of circumference 10 km. Both diagrams
spect to small perturbations, but it breaks down if the perturshow the maximum and minimum densitiggn and po, as func-
bations are sufficiently large. Figure 5 shows that we foundions of the average densip, measured after a dynamical equilib-
two ranges of densitiep e [pe1,pea] and pelpes,peal rium was reached. The unstable traffic regime corresponds to the
where the transition is bistable. For large perturbation amplidensity range where the jam amplitudgj—pou) is large

tudes, the system develops to a localized-cluster state ffectanglelike-shaped regiondiagram(a) shows the dependence
pelper,pesl, OF to a dipolelike state e [ pes,pesl, While of the stability diagram on the perturbation amplitutie One can

it relaxes back to the equilibrium state for smaller perturbaS'¢21y €€ ~two  density  rangeslpe;,pea] =~ With = pes

. . — =21 vehicles/km andp.,= 24 vehicles/km, and p¢s,pca] With
tions. Between these ranges, th‘?“? .IS a regipn pe3= 51 vehicles/km ang.,= 55 vehicles/km, where traffic is non-
e[ pe2:pcal, Where homogeneous traffic is linearly unstable

I . f . | 'linearly stable, i.e., stable for small perturbations, but unstable for
giving rise to cascades of density clustéfstop-and-go large perturbations. In the ran@ip.,,p3], homogenous traffic is

waves”). For p<p¢; andp>pc,, traffic is stable for arbi- nstaple for arbitrary perturbation amplitudes. Diagrédsnshows

trary perturbations. o . . the stability diagram for various relaxation timesnd a perturba-
In Fig. 5a), we plot the minimum and maximum densities tion amplitude ofAp=1 vehicle/km.

Pmin @nd pjay that resulted from simulations of traffic on a

circular road after a dynamic steady state has been reachd@ftion factory. Since the flow-density relation does not de-
A large difference fam—pmi) COrresponds to localized pend on these parameters, this means that one can calibrate

cluster or stop-and-go states, whilg;f,— pmi)=0 is the the stability and the flow rates independently. Figurés) 5
signature of the homogeneous state. At a perturbation amplnd 6 show that an increased value ofeads both to an
tude of one vehicle per knidashed lines the perturba- increased range of |nsFab|I|ty and to increased amplitudes
tion can be considered to be linear, while ap  (Piam—pPmin) Of the nonlinear state. I exceeds values of
=20 vehicles/km(dotted line, the perturbation amplitude @Pout 60 s, the density exceeds the maximum dengify,
reaches the order of the homogeneous densities defining tig the course of the simulations, which is a signature of ac-
maximum perturbation. So from the plot we can determineFidents. Forr<12s, the unstable and metastable regions
the four critical densities. Notice that the densitjeg, and ~ Vanish altogether, and the system is globally stable for all
pmin Of the developed nonlinear state depend neither on theensities and all perturbgtlon amplitudes. For a fixed value
initial density nor on the amplitude of the perturbation. Fig- Y= 1.2 but otherwise arbitrary model parameters, global sta-
ure 6 shows the basins of attraction of the two traffic states iRility is reached, if the dimensionless parametef,
the phase space spannedbgndAp. For values of f,Ap) = Pmao7 Of the scaled equation82) and(33) satisfiesV
corresponding to points inside the two curves, the final<V.=59. Further simulations showed that the stability of
steady state consists of density clusters or stop-and-gwaffic described by the GKT model also increases with in-
waves. Otherwise, the final state is that of homogeneousreasingy. Both the critical relaxation time where accidents
equilibrium. occur and the critical valu¥/ for global stability increase.
Now we will show that the stability of the model is de- This is plausible sinces describes the anticipation of future
termined mainly by the relaxation timeand by the antici- velocity changes.
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FIG. 6. Critical perturbation amplitudesp. of localized pertur- TPeriodic BC T
bations in the metastabl@onlinearly unstabledensity regime for ~ i
various values of. The critical amplitude is the minimal amplitude E
that can cause traffic jam formation. Smaller amplitudes are damped g iy
out in the course of time. Between the two metastable density re- ‘é i
gions arbitrarily small perturbation amplitudes will cause the for- §
mation of traffic jams. At low and high densities, inhomogeneities = T
of traffic flow tend to disappear. e
@] 20 (b) T
It turned out that the qualitative difference between the 40 : : . . .
nonlinear state of Fig. ®), where only one cluster is seen, 20 30 40 50 60
and that of Fig. &), where a cascade of stop-and-go waves Homogeneous Density (vehicles/km)

appeared, can b_e understoo_d by the linearly unstable and FIG. 7. (@ Group velocity of the upstream frorsolid) and
metas_table denS't_y ranges dlscusseq above. In both CaSGBwnstream frontdashed of the first stop-and-go wave displayed
there. IS a region In the wake ,Of _the.f|rst Cluste_r, where thg, Fig. 4. The propagation of the fronts is calculated during a pe-
density is lower, and the velocity is higher than in the homo-jog “where the density of traffic jams does not grow anymare (
geneous region downstream. This gives rise to a transition. 4 min), but the dynamics does not yet depend on the boundary
layer between these regions serving as a small perturbatiqinditions ¢< 15 min). Notice that the propagation velocity at low
[5]. In Fig. 4b), the system is metastable, and this perturbadensities is positive, but slower than the average vehicle velocity. In
tion is too small to induce a new density cluster. In Fi@)4 the instability region, the negative propagation velocity of the
the system is linearly unstable and the transition layer trigdownstream front depends only weakly on the initial density, and
gers a new cluster. This cluster, in turn, gives rise to a nevits magnitude is well compatible with empirical data. The larger
transition layer eventually leading to a cascade of stoppropagation velocity of the upstream front comes from the growing
and-go waves. jam length.(b) Group velocity of the upstream and downstream
Another remarkable feature of Fig(a} is that the width ~ fronts on a circular road. Here the length of traffic jams stabilizes
of the first(upstream stop-and-go wave is growing while the after some time, and their upstream fronts move with the same
other waves remain narrow. The width of the cluster in Fig.velocities as their downstream fronts. The magnitude of the initial
4(b) increases as well, but more slowly. This can be eX_p_erturbation fp=10 vehicles/km) has peen chosen Iarger_than in
plained by observing that the growth rate of the width isdiagram(@ (Ap=1 vehicle/km), resulting in a larger region of
given by the difference of the group velocitieg, o= (Qam ~ "c93UVE group velocities.
- Qin)/(Pjam_ Pin) rsmdvg: (Qout— Qjam)/(pout_ Pjam) of the
upstream and downstream fror{f&g. 7). For the densityp ~ run simulations for various densities. In each run, the simu-
=25 vehicles/km corresponding to Fig(b4, the difference lation time was proportional to the occurrence probability of
is small, while forp= 35 vehicles/kn{Fig. 4c)], it is large.  traffic densities in the course of the day, for which we as-
In all subsequent clusters of Figich, we haveQ;,=Q, and sumed a linear decrease from a maximum valug=a0 to
Pin=Pour SO they do not grow. zero for p=70 vehicles/km. The dots in Fig. 9 show the
Itis required for any realistic traffic model that the density flows and densities “measured” at the cross sections for all
piam inside localized clusters and the traffic in the regionsimulation runs put together. In addition, the solid line in
downstream of it is independent of the inflg®]. This im-  Fig. 8 shows the dynamic average of the flow for runs at a
plies that the group velocity, should be constant. The up- given density. Both figures show that, in the case of unstable
per curves in Fig. 5 for the jam density, the dashed line oftraffic, the flow of the “measured” dynamic flow-density
Fig. 7 forvy, and the dashed line of Fig. 8 fQq, show that relation (broken ling is considerably lower than the equilib-
the GKT model essentially fulfills this requirement. rium flow. From this it follows that, in regions of unstable
Another frequently discussed problem is to what extentraffic, one cannot calibrate equilibrium flows of traffic mod-
equilibrium flow-density relations of traffic models can be €ls to empirical flow-density relations.
calibrated by nonequilibrium empirical data. In Fig. 9 we
simulate the measurement of traffic data by recording the
velocity and density at several fixed locatiofYsneasuring
cross sections)'over a certain period of time. To incorporate ~ The realistic description of shock fronts in traffic is a
the distribution of densities encountered in real traffic, weparticularly difficult problem, as pointed out in Rd#2].

C. Fronts between congested and free traffic
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2400 T T T FIG. 9. Simulated flow-density relation as superposition of data
(b) T=35s obtained at five equally distributed “detectors” on a circular road
1800 | _ of length 10 km(dots. In order to take into account the variation of
§ traffic densities in the course of the day, the average depsitas
§ 1200 varied in the rangél10 vehicles/km, 70 vehicles/knin steps of 2
—a’:) ............ veh/km. The total duration of simulations for the homogeneous den-
< Average Flow —— sity p was 70 min[ 1—p/(70 vehicles/km). Note that, in the un-
600 f %am T T stable regime, the dynamical flow-density values tend to lie below
; Equilibrilfrlrl{ ,,,,,,,,,,, the equilibrium relation(dashed ling
0 3 ' 'l 'l
0 Hom025e neous D e5n08it (vehic712 k) 100 (Xmax=40 km), we simulated an unperturbed outflow by the
€ Y homogeneous von Neumann conditiong,p(Xmax.t)
2400 ; =0,Q(Xmax,1)=0. Figures 108 and 1@b) show the spatio
(c) 1=45s temporal development of the density and the flow fqr
1800 | | < p, (upstream jam fronjs
) One can see that the shape of the backward moving front
2 does not change in timef. Fig. 10a)], and that there is no
gror /S T~ | region of negative velocityFig. 10b)]. This is achieved by
Y A G the nonlocal interaction term in the velocity equation, while
& y €
600 | %am ______ . a viscosity term € 92V/9x?) would make the front smoother
; Equilibrium_ = with increasing time.
ok ! | L Figures 11a) and 11b) show the spatiotemporal evolu-
0 25 50 75 100

Homogeneous Density (vehicles/km)

tion of the density and flow for downstream fronts wjih
>p,. This corresponds to a dissolving jaffor example,

FIG. 8. Characteristic flows in the fully developed stop-and-goafter an accident has been clearadth an outflow to a
traffic corresponding to Fig.(B), which results on a circular road nearly empty road section. Due to the kinematic dispersion

from locally perturbed traffic of average densjty Depicted are, as
a function ofp, the flowsQj,, in the jammed regions, the outflows
Qout from jams, and the average flows. For comparison, the equi-
librium flow Q.= pV, with V, from Eq. (23) is also shown. Notice
that, in the unstable range, the averalygamicflow is lower than

the equilibrium flow.

Therefore, in this section we will investigate how fronts be-
tween two different states of traffic, especially between free
and congested traffic, evolve in the GKT model. We model
such fronts by initial conditions containing discontinuities in
the fieldsp andV. In particular, we consider shocksat, o
between two homogeneous regions with densjiieand p,

at the left (upstrean and right (downstream sides. Initial
conditions withp;> p, include situations of dissolving jams.
The extreme casp;= pmay COrresponds to vehicles starting
from a standstill after a road blockage is removed. Initial
conditions withp,<<p, include situations where free traffic
flow meets a queue of nearly standing vehicles. The simula-

term (1p)d(p@)/dx in the velocity equation, the forward

(@)

p (vehicles/km)
160
120 60
80 40
40 t (min)
0
1] 5 10 15 20 0
X (km)
()
Q (vehicles/h)
2500
2000
1500 0
1000 20
500 t (min)
0
20 15 10 3 o 60
X (km)

tions were carried out with the standard parameter set of FiG. 10. Simulation of an upstream front with initial densities of

Table I. At the upstream boundark£0km), we chose
the fixed (Dirichlet) boundary conditionsp(0t)=p,; and

p1=15 vehicles/km ang,= 140 vehicles/km. Shown is the spa-
tiotemporal evolution ofa) the density, andb) the flow. In(b), the

Q(0t)=Qu(p1) to model a constant inflow consistent direction of the space and time axes is reversed for illustrative
with the initial conditions. At the downstream boundary reasons.
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FIG. 11. Simulations of downstream fronts with 0.8 1 1.2 14 16
pjam=140 vehicles/km. Shown is the spatiotemporal development Y
of (a) the density, andb) the flow. Free boundary conditions were
used on both sides. =) 2300
2
moving front is somewhat smoothed in the course of time. é’ 2000
The finite velocity variance implies that, after some time, the v 1700 |
faster cars are found in a wider distance from the jam front. ~
As a remarkable fact it should be mentioned that, al- 3
though the equilibrium point of the outflodpey:, Qul pou)) O 1400
is the result of a dynamic process, the outflQy, is nearly
constant over a wide range pf [cf. Fig. 12a)]. This agrees
with empirical observations where it has been found that the = 2300 i
outflow of very different forms of congested traffimclud- = )
ing the dissolution of queued city traffic after a traffic light % 2000 | ]
turns greepis nearly a “constant of traffic'{8,43,44. This =
generalizes the above mentioned requirement of a constant g 1700 \
outflow from clusters§whose jam density is determined by \-‘/5
the dynamicsto forms of congestion that are a result of the CS’D 1400 ) ) )
initial and boundary conditions. 20 25 130 35 40
However, the outflowQ,,, varies with the model param- 1 (5)

eters. It increases with growing[cf. Fig. 12b)], because an
acceleration tendency is already recognized in a larger dis- FIG. 12. OutflowQ,,, from a congested traffic state of density
tance from the jam front. The outflow decreases drastically, depending orfa) p;, (b) ¥, (c) T, and(d) 7. The simulated traffic
with increasingT [cf. Fig. 12c)], becausél determines the situation is that of Fig. 11. The outflows were determined after a
time headway between two following vehicles or, equiva-transient time of 30 min.

lently, the inverse of the flow. Furthermore, the outflow is
diminished with increased- [cf. Fig. 12d)], because in-
creased values of correspond to lower accelerations and
thus to more inert vehicles.

outflows from stop-and-go waves, or by the flow resulting
from standing traffic after a red light turns green or an ob-
stacle is removef8,43]. Afterwards, one calibratesand y
by the observed stability behavi@fig. 5), and by the shape
and width of the downstream and upstream fronts connecting
free and congested statéSigs. 10 and 1L Sincer and y
While the model parametekg), T, andpainfluence the  weakly influence the flowgFigs. 12d) and 12b)], the cali-
equilibrium flow-density(or velocity-density relation(Figs.  bration of T, 7, and y is repeated recursively until conver-
2 and 3, the parameters (Fig. 5 and vy influence only the gence is obtained.
stability behavior. This enables an effective calibration of the Applying this procedure to the single-vehicle data of the
GKT model to concrete traffic situations. Dutch motorway A9 leads to the parameter set shown in
First, V, is determined as the low-density limit of the Table I. Notice that, because of their immediate intuitive
experimental velocity-density relatigwhich, in this limit,is  meaning, the plausible range of values for the model param-
also the equilibrium relation andp . is determined by the eters is rather restricted. One can argue that reasonable time
average length of the vehicles and assuming a reasonakbheadways are in the range=[1.0s,2.5$, and that initial
bumper-to-bumper distance of, e.g., 1.5 m in standing trafficaccelerations a,,=Vo/r are in the range an.y
ThenT is calibrated by the observed maximum flows, by thee[1 m/,4 m/¢], correspondinde.g., forV,=144 km/h to

D. Method of parameter calibration
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7e[10 5,40 §. Finally, the minimum anticipation of traffic while homogeneous traffic flow is stable for high and low

is to the car in front, implyingy=1. densities. The GKT model satisfies two requirements which
should hold for any realistic modgb]. First, the transition to
IV. SUMMARY AND CONCLUSIONS localized clusters is hysteretic. Second, the outflow region of

the clusters is nearly independent of the homogeneous den-
We have proposed a macroscopic gas-kinetic-based traffigity. In contrast to most other models, however, the traffic
model (GKT mode) that was derived from a microscopic flow within the clusters is finite and can be influenced by the
model of vehicle dynamics. The assumed fluctuations of vemodel parameters and y. This enables the simulation of

hicle acceleration implied a velocity distribution of finite “synchronized” traffic stateg26] that turned out to be the
variance which is governed by a kinetic equation related tnost frequent form of congested traffit].
that used in kinetic gas theory. In the resulting GKT equa-  Only for high densities and foy=1 can the interaction
tions, the velocity variance enters both the braking interacterm of the microscopic equatiorfd) underlying the GKT
tions and the smoothing effect of the “kinematic disper-model be written in terms of a simple car-following model.
sion.” For this case, we performed simulations with a smoothed
In contrast to gas-kinetic-based models proposed earligfersion of Eq.(4) (containing no abrupt velocity changes in
[18,21], we could now derive a correlation factor reflecting the interaction term and found a nearly quantitative agree-
the increased interaction rate of vehicles at high densities byhent in describing collective states like clusters or stop-
simple and plausible arguments. Furthermore, we replacegnd-go waves.
the dynamic variance by a “constitutive relation” obtained  The high numerical stability of the GKT model also al-
from single-vehicle data, thereby considerably simplifyingjowed us to treat realistic boundary conditidirstead of the
the deSCfiption. The reSUlting relation of the flow as a fUnC'periodiC boundary conditions used in most previous pub"ca-
tion of the density agreed well with empirical data. Since theijons), and to simulate discontinuous fronts between homo-
form of this function is determined by the constitutive rela- geneous low and high-density states. Such fronts correspond
tion, this supports the assumption of the model that brakingo the formation or dissolution of jammed traffic that is
interactions are mainly caused by a finite velocity variance.caused by initial or boundary conditions rather than by dy-
Because of its derivation from physical assumptions, allhamic instabilities.
model parameters of the GKT model have an intuitive mean- Remarkab]y’ the outﬂov@out from jammed regions was
ing, and can be either directly measured or calibrated to realearly the same as the outflow from localized clusters, re-
traffic data. It is straighforward to model the effects of, e.g.,gardless of the density of the jams, including even standstill
speed limits, varying road conditioe.qg., gradients or dif-  traffic (related, e.g., to the dissolution of a queue behind a
ferent driving behaviors. Moreover, we proposed a systeMaffic light turning green The observation that the outflow
atic calibration procedure. from arbitrary kinds of congested traffic is a “universal”
In contrast to other macroscopic traffic models, the GKT¢onstant of traffic dynamics, and also its numerical value of
model is nonlocal. While the nonlocality has similar smooth-apout 1800 vehicles per hour, agrees well with observations
ing effects to those of a diffusion or viscosity term, it leads toof real traffic [8,43,44. In addition to the constant group
a more favorable numerical stability behavior. The modelelocity of localized clusters, this universal outflow can be

belongs to the class of effective one-lane models, so multiconsidered as an additional requirement for realistic traffic
lane aspects are treated only in a global way. Nevertheless, iigdels.

is straightforward to include ramg®6], or lane blockages
(e.g., due to road works or accidents
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