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Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model

Martin Treiber, Ansgar Hennecke, and Dirk Helbing
II. Institute of Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

~Received 24 June 1998!

We derive macroscopic traffic equations from specific gas-kinetic equations, dropping some of the assump-
tions and approximations made in previous papers. The resulting partial differential equations for the vehicle
density and average velocity contain a nonlocal interaction term which is very favorable for a fast and robust
numerical integration, so that several thousand freeway kilometers can be simulated in real time. The model
parameters can be easily calibrated by means of empirical data. They are directly related to the quantities
characterizing individual driver-vehicle behavior, and their optimal values have the expected order of magni-
tude. Therefore, they allow one to investigate the influences of varying street and weather conditions or
freeway control measures. Simulation results for realistic model parameters are in good agreement with the
diverse nonlinear dynamical phenomena observed in freeway traffic.@S1063-651X~99!10501-4#

PACS number~s!: 05.70.Fh, 05.60.2k, 47.55.2t, 89.40.1k
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I. INTRODUCTION

Recently, traffic dynamics has become interesting to
rapidly growing community of physicists. This is not on
due to its practical implications for optimizing freeway tra
fic, but even more because of the observed nonequilibr
phase transitions@1,2# and nonlinear dynamical phenomen
like the formation of traffic jams@3,4#, stop-and-go traffic
@5#, and synchronized traffic@1,6#. It seems that all forms o
congested traffic have almost universal properties which
largely independent of the initial conditions and the spatia
averaged density, like the characteristic outflow from tra
jams of about 18006200 vehicles per kilometer and lane
their typical dissolution velocity of about21565 km per
hour @7#. This universality arises from the highly correlate
state of motion produced by traffic congestions@8,9#.

Whereas classical approaches focused on reproducing
empirically observed flow-density relation and the regime
unstable traffic flow, recent publications pointed out that i
more important to have traffic models which are able to
scribe the observed spectrum of nonlinear phenomena
their characteristic properties@3,5,7,10#. We think that it
would be desirable to develop models that are consis
with both aspects of empirical data. Such models have b
proposed lately, including cellular automata models@11,9#
and ‘‘microscopic’’ models of driver-vehicle behavio
@12,13#, and the macroscopic model discussed in this pa

In order to have meaningful and measurable model
rameters, we will relate our macroscopic model of freew
traffic to a ‘‘microscopic’’ model of driver vehicle behavio
via a gas-kinetic derivation~cf. Sec. II!. Derivations of this
kind have been already proposed in a number of previ
publications@14–17#, but the correct treatment of the mo
interesting regime of moderate and high densities remain
problem. In Refs.@18–20#, the effect of vehicular space re
quirements has been taken into account by a correlation
tor reflecting the increased interaction rate of vehicles~which
can now be derived from simple and plausible arguments
Sec. II B!. In deriving the associated macroscopic equatio
different approximations have been suggested, the m
harmless of which was a gradient expansion@18,21#. This led
PRE 591063-651X/99/59~1!/239~15!/$15.00
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to a viscosity term and some unexpected but essential h
density corrections containing spatial derivatives of differe
orders. However, the resulting partial differential equatio
were not very suitable for numerical simulations.

Meanwhile we managed to evaluate the Boltzmann-l
gas-kinetic interaction term exactly~cf. Sec. II B!. Since it
turned out that a dynamical variance equation@4,22# is not
necessary for a description of the presently known proper
of traffic flows, we replaced it by a constitutive relatio
which—corresponding to a quasiadiabatic approximation
agrees with the equilibrium variance. The resulting mac
scopic traffic equations are coupled nonlinear partial diff
ential equations which can be represented in the form of
equations with a nonlocal and anisotropic source term@23#.
For this reason, we can now apply various standard meth
for numerical integration. It turns out that the nonlocal te
has similar smoothing properties like a viscosity term, bu
does not change the hyperbolic character of the partial
ferential equations to a parabolic one, and it has more fav
able properties with respect to numerical stability. For t
reason, our model allows a robust real-time simulation
freeway stretches up to several thousand kilometers o
typical personal computer.

Compared to previous macroscopic traffic models,
gas-kinetic-based traffic model~GKT model! proposed in the
following takes into account the variance of vehicle velo
ties, which is basically proportional to the square of avera
velocity @cf. Eq. ~21!#, but with a density-dependent prefa
tor that determines the exact form of the flow-density re
tion in equilibrium. Moreover, the ‘‘optimal velocity’’ or
‘‘dynamical equilibrium velocity’’ Ṽe @cf. Eq. ~31!#, toward
which the average velocity relaxes, depends not only on
local density but also on the average velocity, and, e
more importantly, on the density and average velocity at
‘‘interaction point’’ which is advanced by about the safe d
tance. Nevertheless, the equations are structurally relate
for example, the Kerner-Konha¨user model@3#, so that we
find many similar nonlinear phenomena. This includes
sequence of stable, linearly unstable, and metastable reg
@5,24#, the local breakdown effect@25#, the local cluster ef-
fect @5#, and the formation of dipole layers@24# at suffi-
239 ©1999 The American Physical Society
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ciently large densities. We also obtain that, in the unsta
traffic regime, the resulting flow-density relation differs fro
the equilibrium one~lying below the latter; cf. Fig. 9!. In
addition, we find that the outflow from traffic jams is ind
pendent of the initial conditions and the spatially averag
density ~cf. Fig. 5!. Moreover, the dissolution velocity o
traffic jams varies only a little with density~cf. Fig. 7!. Fi-
nally, the gas-kinetic-based model is able to explain the co
mon phenomenon of sychronized congested traffic@26#, if
the inflow at on ramps is taken into account.

It turns out that our model can be easily calibrated to
static and dynamic properties of traffic flow data by a cert
systematic procedure~cf. Sec. III D!. All parameters have a
clear interpretation, since they are related to quantities c
acterizing the driver vehicle units like desired velocities
vehicle lengths~cf. Table I!. At least some quantities like th
typical desired velocity or the average time headway are
rectly measurable. Moreover, the optimal parameters
tained from a calibration to empirical data have the expec
order of magnitude~cf. Table I!. Therefore, the model allow
one to investigate the effect of speed limits, of a larger p
centage of trucks, of bad weather conditions, etc. It will u
ally be sufficient to change the affected parameter val
accordingly, instead of calibrating or even modifying t
whole model for every new situation.

II. MODEL

A. Underlying gas-kinetic equation

Similar to the gas-kinetic derivation of macroscopic equ
tions for fluids, we start by formulating a kinetic equation f
the locally averaged dynamics of driver-vehicles un
which play the role of the molecules here. The kinetic eq
tion describes the evolution of the coarse-grained pha
space density

r̃~x,v,t !5(
a

E dt8E dx8E dv8g~ t2t8,x2x8,v2v8!

3d„x82xa~ t !…d„v82va~ t !…, ~1!

denoting the probability density of finding, at a given timet,
a vehiclea at positionxa with velocity va . In more intuitive
terms, r̃ corresponds to the spatial density of vehicles
lane times their velocity distribution. Since the GKT mod
is an effectively one-lane model where lane changes
overtaking are only implicitly taken into account, there is
lane index. The coarse graining is performed by taking lo
averages over a weighting functiong(t2t8,x2x8,v2v8)

TABLE I. Typical parameter values of the GKT model used f
the simulations throughout this paper. The values were obtaine
calibration of the model parameters to Dutch freeway data.

Parameter Symbol Typical value

Desired velocity V0 110 km/h
Maximum density rmax 160 vehicles/km
Acceleration relaxation time t 35 s
Time headway T 1.8 s
Anticipation factor g 1.2
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satisfying *dt8*dx8*dv8 g(t2t8,x2x8,v2v8)51, which
is localized in a microscopically large and macroscopica
small neighborhood aroundx and in suitable neighborhood
aroundt andv. The particular choice ofg is not relevant for
the form of the macroscopic equations@27#. However, the
scalesDt, Dx, andDv are meaningful in that they enter th
effective relations for the higher velocity moments like t
variance.

The information specific to vehicular traffic is containe
in the ‘‘microscopic’’ dynamics of individual driver-vehicle
units. In the GKT model, we assume the vehicular dynam
of the form @13,28#

dxa

dt
5va , ~2!

dva

dt
5

va
02va

ta
2 (

bÞa
f ab . ~3!

The first term on the right-hand side of Eq.~3! represents the
acceleration of the driver-vehicle unita to the desired veloc-
ity va

0 with an adaptation time ofta . On empty roads, this is
the only acceleration term. Notice thatva

0 is an intrinsic
property of the driver-vehicle unit. The second term on t
right-hand side of Eq.~3! represents the braking interactio
of vehicle a due to slower vehiclesb in front. It depends
mainly on the subjective minimum safe time headwayTa to
the car in front that drivera wants to keep. The details of th
braking interaction will be discussed below.

In general, the parametersva
0 andta , and the parameter

of the braking interaction likeTa are different for each indi-
vidual vehiclea. This could be respected by generalizingr̃
to a multidimensional phase-space density in a phase s
spanned by the dimensionsx, v, t, v0, etc. This density
would express the probability of finding atx a driver-vehicle
unit with velocity v, whose microscopic parameters aret,
v0, etc. Paveri-Fontana applied this concept to the extra v
ablev0 alone, formulating an equation forr̂(x,v,v0,t) @15#,
which was further investigated by Helbing@17# and Wagner
et al. @19#.

In the GKT model, however, we assume that all dev
tions of the individual driving behavior from that of the ‘‘av
erage driver’’ eventually lead to fluctuations of the velocit
For a nearly empty road this is obvious. Then the brak
term is negligible, and the distribution of vehicle velocitie
must converge to that of their desired velocities. In den
traffic, there are additional sources of velocity fluctuatio
The time when vehiclea starts to brake in response to
slower vehicle in front depends on the individual safe tim
headwayTa . Obviously, drivera brakes later for lower val-
ues of Ta . Thus differentTa , lead to different velocities,
even if all other parameters of the vehicles~in particular the
desired velocities! and all initial conditions are unchanged
In addition, imperfect driving behavior such as delayed
celeration or overbraking~i.e., braking more than necessa
in a given situation! contributes to the velocity fluctuation
@18#.

If we are not interested in microscopic details, such flu
tuations can be described in a global way by a fluctuat

by
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force in the acceleration equation~3!, in analogy to hydro-
dynamic fluctuations@29#. Thus we approximate Eq.~3! by

dva

dt
5

V02va

t
2 (

bÞa
f̄ ab1ja~ t !, ~4!

whereV05^va
0&ª(1/N)Sava

0 and 1/t5^1/ta& are the aver-
aged microscopic parameters of the acceleration term~N de-
notes the total number of vehicles!. The braking termf̄ ab is
formulated with averaged parameters likeT5^Ta& as well.
The fluctuating forcesja(t) obey

^ja~ t !&50, ^ja~ t !jb~ t8!&52Ddabd~ t2t8!. ~5!

The fluctuation strengthD will be determined empirically by
comparing the resulting velocity variance with that obtain
from single-vehicle data; see below. For low traffic densiti
where the interactions can be neglected, Eqs.~4! and ~5!
compose an ordinary stochastic differential equation forva .
In the stationary limit, this leads to the distribution functio
w(va)5(2pDr)21 exp@2(va2V0)

2/(2Dt)#. This means
that, in the low-density limit of negligible interactions
the fluctuating strengthD of the fluctuating forces~5! is re-
lated to the velocity varianceu5^(va2V0)2& by u5Dt
~fluctuation-dissipation relation!. In Sec. II B, it will be
shown that this relation holds for stationary traffic at all de
sities.

Equations ~4! with ~5! represent a microscopic traffi
model on their own. It remains, however, to specify the ‘‘m
croscopic’’ braking interactionsf̄ ab . In real traffic, these
interactions depend in a complicated manner on the o
velocity, and on the distances and velocities of the vehic
in front. To formulate reasonable assumptions for the G
model, we will use averaged quantities like the dens
r(x,t)5*dv r̃(x,v,t), which is justified since we want to
derive a macroscopic model. As a consequence, howev
simple purely microscopic equivalent of the GKT model e
ists only in some special cases.

Specifically, we make the following simplifying assum
tions:~i! A driver at positionx reacts to the traffic situation a
the advanced ‘‘interaction point’’

xa5x1g~ l 1Tv !, ~6!
er
n

d
,

-

n
s

T
y

, a
-

wherel 51/rmax ~with maximum densityrmax! is the average
vehicle length plus the bumper-to-bumper distance kep
standing traffic, andg is an average anticipation factor wit
typical values between 1.0 and 3.0. In the limit of conges
traffic, the interaction point isg vehicle positions in front of
the actual vehicle positionx. Notice that, in the limit of con-
gested traffic and forg51, assumption~i! corresponds to
classical car-following models@30,10,28,13#. ~ii ! In the light
of a mean-field ansatz, the traffic situation at the interact
point can be described by the density and the velocity dis
butions at this place, i.e., by the phase-space den
r̃(xa ,v,t). ~iii ! There is a certain percentagep(ra)
[1/x(ra) of interaction-free space that allows drivers to a
proach the respective car in front before they brake. T
percentage is a decreasing function of the average den
ra5*dv r̃(xa ,v,t) at the interaction point withp(0)51,
andp(rmax)50. This is determined by the condition that,
homogeneous dense traffic, the vehicles follow each o
with a time headway ofT. Furthermore, we assume that th
probability of undelayed overtaking by lane changing
given byp as well@31#. Notice that the factorx51/p can be
interpreted as the increase of the interaction rate due to
finite space requirements and positional correlations of
hicles, compared to pointlike objects@18–20,28#. ~iv! If a
driver is faster than the velocityva at the interaction point,
and if he cannot overtake by lane changing@which happens
with probability (12p)#, he reduces his velocity abruptly t
va as soon as the distance to the interaction point~moving
with velocity va! has decreased by his shareDxfree5p/ra of
the interaction-free space@32#. ~1/ra is the average center
to-center distance between two vehicles atxa!.

Now we formulate the kinetic equation underlying th
GKT model. Taking the time derivative of definition~1! of
the phase-space density, and inserting the microscopic e
tions ~2! and ~4!, gives, by partial integration, the kineti
evolution equation for the phase-space density@28#,

]r̃

]t
1

]

]x
~ r̃v !1

]

]v F r̃ V02v
t G5

]

]v
~ r̃ f int!1

]2

]v2
~ r̃D !,

~7!

where the interaction term has the general form
f int5 r̃21(
a

(
b~Þa!

E dt8E dx8E dv8g~ t2t8,x2x8,v2v8! f̄ abd„x82xa~ t !…d„v82va~ t !…. ~8!
e-
-

The four assumptions for the microscopic braking int
actions f̄ ab directly result in a Boltzmann-like interactio
with a density-dependent prefactorP(r):

]

]v
~ r̃ f int!5P~r!I~x,v,t ! ~9!

with
-
I~x,v,t !5E

v8.v
dv8~v82v !r̃~x,v8,t !r̃~xa ,v,t !

2E
v8,v

dv8~v2v8!r̃~x,v,t !r̃~xa ,v8,t !.

~10!

The first term of Eq.~10! describes the increase of the phas
space densityr̃(x,v,t) due to the deceleration of faster ve
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hicles with velocityv8.v which cannot overtake vehicles a
xa driving with velocity v, whereas the second term deli
eates the decrease of the phase-space density due to d
erations of vehicles driving withv which cannot overtake
slower vehicles atxa driving with v8,v. The prefactor

P~r!5~12p!x5
1

p
21 ~11!

is proportional to the probability (12p) that one cannot im-
mediately overtake a slower vehicle, and to the correlat
factorx51/p describing the increased interaction rate due
vehicular space requirements.

In summary, the kinetic phase-space equation upon wh
the GKT model is based is given by

]r̃

]t
1

]

]x
~ r̃v !1

]

]v F r̃ V02v
t G

5S 1

p
21D F E

v8.v
dv8~v82v !r̃~x,v8,t !r̃~xa ,v,t !

2E
v8,v

dv8~v2v8!r̃~x,v,t !r̃~xa ,v8,t !G
1

]2

]v2 ~ r̃D !. ~12!

For g51 and for dense traffic, the underlying micro
scopic dynamics is that of a microscopic, stochastic c
following model. In this case, traffic behaves like a on
dimensional gas of inelastic hard ‘‘vehicular molecule
with anisotropic interactions whose effective sizes vary w
the local density such that there is a spaceDxfree(ra) be-
tween the molecules.

B. Derivation of the basic equations

Following the standard procedure summarized in Re
@28, 18#, from the kinetic equation~12! we derive macro-
scopic equations for the lowest velocity moments. In parti
lar, we are interested in the dynamics of the macrosco
vehicle densityr(x,t) per lane and the average veloci
V(x,t) defined by

r~x,t !5E
0

`

dv r̃~x,v,t !, ~13!

V~x,t ![^v&5r21E
0

`

dv v r̃~x,v,t !. ~14!

As usual, one obtains an infinite hierarchy of equatio
where that for thenth moment depends on the (n11)st mo-
ment. In particular, the macroscopic density equation
pends onV, and the macroscopic equation forV on the vari-
ance

u~x,t ![^~v2V!2&5r21E dv~v2V!2r̃~x,v,t !. ~15!

In the GKT model, we close the hierarchy by two assum
tions. First, we assume that the varianceu is a function of
cel-

n
o

h

r-
-

s.

-
ic

s

-

-

density and average velocity. Second, we assume that
phase-space density is locally associated with a Gaussian
locity distribution

r̃~x,v,t !5r~x,t !
e2@v2V~x,t !#2/@2u~x,t !#

A2pu~x,t !
. ~16!

This is well compatible with empirical velocity distribution
obtained from single-vehicle data@28,33#, at least if the per-
centage of trucks is negligible@34#. Ansatz~16! is also con-
sistent with the fluctuating force~5! in the microscopic equa
tion ~4!. A more general ansatz taking into account sm
deviations from local equilibrium can be found in Ref.@22#.

Multiplying the phase-space equation~12! with 1 or v,
respectively, and integrating overv leads, after straightfor-
ward but lengthy calculations, to

]r

]t
1

]~rV!

]x
50, ~17!

S ]

]t
1V

]

]xDV52
1

r

]~ru!

]x
1

V02V

t

2
P~ra!ra~u1ua!

2
B~dV!, ~18!

where we used the notationf a(x,t)[ f (xa ,t) with f
P$r,V,u%. It turned out that the approximation of the su
(u1ua)/2'u leads only to negligible quantitative chang
@35#. On the other hand, the approximation simplifies t
velocity equation considerably, so we will adopt it henc
forth. The monotonically increasing macroscopic interact
term

B~dV!52F dV

e2dV
2 /2

A2p
1~11dV

2 !E
2`

dV
dy

e2y2/2

A2p
G ~19!

describes the dependence of the braking interaction on
dimensionless velocity differencedV5(V2Va)/Au1ua.
For g51, the macroscopic interaction term can be eas
understood by the underlying microscopic dynamics of
GKT model. If a vehicle at locationx with velocity v is
faster than one atxa with velocity va ~i.e., dv52va.0!, it
approaches the car in front within the timeDt5Dxfree/dv,
whereDxfree5p/ra is the average interaction-free distan
Dxfree5p/ra of a car. Then, if it cannot overtake immed
ately, which would happen with probability (12p), it
abruptly reduces the velocity bydv. The resulting ensemble
averaged deceleration is

^dv/Dt&52
~12p!

p
raE

0

`

d~dv !~dv !2w~dv !. ~20!

If v andva are uncorrelated and Gaussian distributed@cf. Eq.
~16!#, with expectation valuesV andVa and variancesu and
ua , respectively, the distribution functionw(dv) of the ve-
locity difference is also a Gaussian, with expectation va
V2Va5Au1uadV and variance (u1ua). Evaluating inte-
gral ~20! yields ^dv/Dt&52 1

2 Pra(u1ua)B(dV), i.e., the
macroscopic braking term in Eq.~18!.
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The assumption of a Gaussian velocity distribution alo
would close the system after the variance equation, wh
can also be derived from the kinetic equation~12! @22,23#.
Since a dynamic variance equation is not necessary for
description of known traffic instabilities, we close the syste
already after the velocity equation and assume for the v
ance the local equilibrium valueu5Dt of the variance equa
tion @22,23#. Notice that this relation for the variance is th
same relation as derived in Sec. II A for low densities.

To complete the derivation of the GKT equations, w
have to specify the ‘‘constitutive relation’’ for the quasiadi
batically eliminated variance as a function ofr and V, and
the relation for the dimensionless correlation prefactorP(r).
The empirical data suggest that the variance~and thusD! is a
density-dependent fractionA(r) of the squared velocity,

u5A~r!V2, ~21!

and that the variance prefactorA is higher in congested traf
fic than in free traffic. For qualitative considerations,A can
be chosen to be constant. In the following, however, we
proximate the empirical data by the Fermi function

A~r!5A01DAF tanhS r2rc

Dr D11G , ~22!

whereA0 andA012DA are about the variance prefactors f
free and congested traffic, respectively,rc is of the order of
the critical density for the transition from free to congest
traffic, andDr denotes the width of the transition.

Now, we determine the correlation functionP(r) by im-
posing that the time headways in dense, homogeneous tr
are given byT. Solving Eq.~18! for stationary and homoge
neous traffic of densityr leads to the equilibrium velocity
density relation

Ve~r!5
Ṽ2

2V0
F216S 11

4V0
2

Ṽ2 D 1/2G , ~23!

with

Ṽ5S V0

trA~r!P~r! D
1/2

. ~24!

This also determines the equilibrium traffic flow per lane

Qe~r!5rVe~r!. ~25!

In the limit of high densities, (12r/rmax)!1 ~or Ve!V0!,
this reduces toVe5Ṽ. On the other hand, time headways
T and average gaps ofs5(1/r21/rmax) between the vehicles
correspond to a velocityVT(r)5s/T5(1/r21/rmax)/T. De-
mandingVe5VT for high densities leads to

P~r!5
V0rT2

tA~rmax!~12r/rmax!
2

. ~26!

This expression is also consistent in the other limit of hom
geneous traffic with very low density. With Eq.~26!, the
macroscopic braking term2Pru of Eq. ~18! for homoge-
neous traffic is proportional tor2, in accordance with intu-
e
h

he

ri-

-

ffic

-

ition: The rate of encountering a slower vehicle is prop
tional to r. Furthermore, the probability that one cann
overtake immediately by lane changing when a slower
hicle is encountered, is proportional tor as well, resulting in
a proportionality tor2 at low densities. The interpretation o
p5(P11)21 as the percentagerDxfree of free space is also
consistent for both limiting cases. Forr→rmax, one has
Dxfree→0. For r/rmax!1, one obtains Dxfree2Dx
5V0T2/(tA0). This means that vehicles on a nearly emp
road would react to other vehicles in front~mostly by lane
changing!, if these vehicles were closer thanV0T2/(tA0).
This is the net safety distanceV0T times a factorT/(A0t)
that is of order unity~see Table I!.

C. Discussion of the model

For convenience, let us summarize the equations of
GKT model. The traffic density and average velocity evolv
in the absence of on and off ramps according to

]r

]t
1

]~rV!

]x
50, ~27!

S ]

]t
1V

]

]xDV52
1

r

]~rAV2!

]x
1

V02V

t

2
V0A~r!

tA~rmax!
S raTV

12ra /rmax
D 2

B~dV!,

~28!

whereB(dV), is given by Eq.~19!. ~For a generalization to
cases with on and off ramps see Ref.@26#.! A(r) is the
measured or assumed variance in units of the squared ve
ity, for which we use relation~22! throughout this paper.

The density equation~27! is just a one-dimensional con
tinuity equation reflecting the conservation of the number
vehicles. Thus the temporal change]r/]t of the vehicle den-
sity is just given by the negative gradient2]Q/]x of the
lane-averaged traffic flowQ5rV.

The first term on the right-hand side of Eq.~28! is the
gradient of the ‘‘traffic pressure’’ru5rAV2. It describes
the kinematic dispersion of the macroscopic velocity in
homogeneous traffic as a consequence of the finite velo
variance. For example, the macroscopic velocity in front o
small vehicle cluster will increaseeven if no individual ve-
hicle accelerates, because the faster cars will leave the clu
ter behind. The kinematic dispersion also leads to a smo
density profile at the dissolution front between conges
traffic and an empty road, as it occurs when a road block
at x0 is removed at a timet0 . In this case, the first vehicle
can all accelerate to their respective desired velocities. T
after sufficiently long times, the high-speed tail of the dist
bution of desired velocities translates into a distribution
vehicle positions.

The second term of Eq.~28! denotes the acceleration to
ward the~traffic-independent! average desired velocityV0 of
the drivers with a relaxation timet. Individual variations of
the desired velocity are accounted for by the finite veloc
variance.

The third term of Eq.~28! models braking in response t
the traffic situation at the advanced ‘‘interaction point’’xa
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5x1g(1/rmax1TV). The braking deceleration increas
Coulomb-like with decreasing gap (1/ra21/rmax) to the car
in front ~1/ra being the average distance between succes
vehicle positions and 1/rmax the minimum vehicle distance!.
In homogeneous dense traffic, the acceleration and bra
terms compensate for each other at about the safe dista
In general, the deceleration tendency also depends on
velocity difference to the traffic at the interaction point, cha
acterized by the ‘‘Boltzmann factor’’B(dV). In homoge-
neous traffic, we haveB(0)51. In the limiting casedV@0
~where the preceding cars are much slower!, it follows that
B(dV)52dV

2. If, in contrast, the preceding cars are mu
faster ~i.e., dV!0!, we haveB(dV)'0. That is, since the
distance is increasing, then the vehicle will not brake, eve
its headway is smaller than the safe distance.

The main difference with respect to other macrosco
traffic models is the nonlocal character of the braking te
which we obtained by derivation from realistic assumptio
of driving behavior. The nonlocality has very favorable pro
erties with respect to the robustness of numerical integra
methods and their integration speed. It has smoothing p
erties like the viscosity term used in the Kerner-Konha¨user
model@3,5#, but its effect is anisotropic. There is no smoot
ing in the forward direction, which would imply that car
would react on density or velocity gradients of the vehic
behind them.

The GKT model fits into the general class of macrosco
traffic models@18,28# defined by the continuity equation~27!
and the velocity equation

S ]

]t
1V

]

]xDV52
1

r

]P
]x

1
1

t
@Ṽe~r,V,ra ,Va!2V#.

~29!

In the GKT model, the ‘‘traffic pressure’’P is given by

P5ru5rA~r!V2, ~30!

and the ‘‘dynamical equilibrium velocity,’’ toward which th
average velocity relaxes in the actual traffic situation, is

Ṽe~r,V,ra ,Va!

5V0F12
A~r!

2A~rmax!
S raTV

12ra /rmax
D 2

B~dV!G .
~31!

In contrast to other macroscopic models@36,16,3# belonging
to the class defined by Eq.~29!, the ‘‘dynamical equilibrium
velocity’’ depends onr and Vat two different locations, thus
introducing the nonlocality.

The five parameters of the GKT model, listed in Table
are all intuitive. Three of them,V0 , T, and rmax, can be
directly determined by fitting the equilibrium flow densi
relation ~25! of the GKT model to measured flow-densi
data, cf. Fig. 1. The desired velocityV0 is determined by
fitting the data at low densities by a straight lineQ(r)
5V0r. The safe time headwayT and the maximum density
rmax are determined by fitting the data at high densities b
straight line crossing the abscissa atrmax, and identifying
this line with Q(r)5(12r/rmax)/T. The ensuing averag
ve
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distance 1/rmax of two cars in standing traffic must be con
sistent with the average length of the vehicles plus a minim
bumper-to-bumper distance kept, which is about 1.5 m.
real traffic is stable at very low and very high densities, t
above procedure of comparing the measured data in th
density ranges with theequilibriumcurve of the GKT model
is justified. At intermediate densities, the equilibrium cur
of the model lies somewhat above the data~Fig. 1!. How-
ever, in Sec. III it will be shown that homogeneous traffic
unstable in this density range, and that the averageddynamic
traffic flow in the GKT model is below the equilibrium curv
as well.

The remaining parameterst andg can be systematically
calibrated by means of the dynamic properties. This will
discussed in Sec. IV. Table I lists the numerical values
sulting from a fit to traffic data of the Dutch motorway A9.
not stated otherwise, we used these values in the nume
simulations of Sec. III, referring to them as the ‘‘standa
parameter set.’’

Notice that all parameters have realistic values. In parti
lar, this holds fort which, for V05158 km/h, would have
the meaning of the acceleration time from 0 to 100 km
Furthermore,V0 /t is limited to the average maximum acce
eration of vehicles on a free road starting with zero veloc
For these reasons, a relaxation timet'35 s is sensible for
freeway traffic.~For city traffic, t is shorter!.

The valueT51.8 s for the safe time headway is cons
tent with the rule ‘‘distance~in m! should not be less than
half the velocity~in km/h!’’ suggested by German author
ties. For other data, however, we often find that a somew

FIG. 1. Comparison of~a! the density-dependent relative var
ance in units of the squared average velocity, and~b! the equilib-
rium flow-density relation~25! in the GKT model~solid lines! with
empirical data~crosses!. The empirical data were obtained from
single-vehicle data of the Dutch motorwayA9 by averaging over
one-minute intervals~see main text!.
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smaller time headway gives a better fit.
Since the model parameters are meaningful, it is simpl

model changes of the traffic dynamics caused by exte
effects like environmental influences. For example, a sp
limit would be considered by decreasingV0 . Bad weather
conditions leading to more defensive driving would be ch
acterized by an increased time headwayT and a lower value
of V0 ~plus a reduction ofg, if there is heavy fog!. In rush-
hour traffic, it is plausible to assume a higher percentage
experienced drivers than in holiday traffic, which would co
respond to a higherg. Effects like a varying distribution of
vehicle types can be model as well. For example, a hig
proportion of trucks would lead to a decrease ofV0 and
rmax, but also to an increased value oft.

Finally, we compare the macroscopic GKT model w
direct simulations of microscopic models of form~4!. While
the microscopic model is stochastic, the deterministic G
model includes the stochasticity of real traffic by the con
tutive relation~21! for the velocity variance. Therefore, th
GKT model describesmacroscopiceffects of fluctuations
like kinematic dispersion. The additional information of i
dividual fluctuations contained in microscopic models see
not to be of practical relevance, since empirical traffic d
are typically available as 1-min averages, i.e., in terms
macroscopic quantities.

In contrast to microscopic models, the GKT model is
effectively one-lane model and treats overtaking and the
sociated lane-changing manoeuvers in an overall way. A
croscopic model would need additional assumptions and
parameters for the lane-changing decisions as well as a
tional assumptions about the population of vehicles, e.g.,
distribution of desired velocities. Moreover, the macrosco
model can be generalized to simulate on ramps, off ram
and lane closings, simply by adding source and sink term
the macroscopic density and velocity equations~27! and~28!
@25,26#. In microscopic models this would require the trea
ment of lane changes from dead-end lanes, which is a
ticularly difficult problem.

Finally, apart from very low densities, the numeric pe
formance of simulations with the GKT model is far super
to corresponding microscopic simulations. This is achiev
partly by using lookup tables for the functionsA(r) and
B(dV) and by applying explicit integration schemes@37#. In
addition, the GKT model has only one density and veloc
field variable, and its computational speed~measured in
terms of the length of the road sections that can be simul
real time! is independent of the density and the number
lanes.

D. Dimensionless form of the GKT equations

By reformulating the GKT model in dimensionless va
ables, the number of model parameters can be reduce
two. We measure times in units oft and distances in units o
1/rmax by introducingt85t/t andx85rmaxx. The dependen
variablesr85r/rmax, V85Vtrmax, u85ut2rmax

2 , etc. are
scaled accordingly. This leads to the scaled GKT equatio

]r8

]t8
1

]~r8V8!

]x8
50 ~32!

and
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S ]

]t8
1V8

]

]x8DV852
1

r8

]

]x8
~r8u8!1~V082V8!

2P8A8~r8!
~ra8V8!2

~12ra8!2 B~dV!,

~33!

where

A8~r8!5
A~rmaxr8!

A~rmax!
~34!

is of order unity, and the Boltzmann termB(dV) @i.e., Eq.
~19! in scaled variables# remains unchanged. The remainin
dimensionless parameters are the scaled desired velocit

V085rmaxtV0 ~35!

and the scaled cross section

P85
rmaxV0T2

t
5V08S T

t D 2

, ~36!

in addition to the anticipation factorg from the unscaled
equations.

The parameterV08 , with a numerical value of 171.4 fo
the standard parameter set, has some analogies to
Reynolds number in the Navier-Stokes equations for nor
fluids. Assuming that typical velocities are proportional
the desired velocities, typical densities proportional tormax,
and typical length scales proportional to 1/rmax, this can be
seen by observing that the magnitude of the destabiliz
advection, pressure, and braking terms in the unscaled ve
ity equation~28! is proportional tormaxV0

2, while the stabi-
lizing relaxation term is proportional toV0 /t. So, the ratio
between the destabilizing ‘‘kinetic’’ terms and the stabilizin
relaxation term is proportional tormaxV0t5V08 . As will be
shown in Sec. III B, homogeneous traffic can become
stable, if a certain ‘‘critical’’ valueVc8 is exceeded.

The scaled cross sectionP8, with a numerical value of
0.453 for the standard parameter set, gives the ratio betw
the interaction term and the kinetic advection and press
terms. In analogy to the Prandtl number of thermal conv
tion in a simple fluid heated from below@38#, it depends on
the ratio of the two relevant time scalesT andt of the sys-
tem.

As in the unscaled equations, the parameterg character-
izes the sensitivity in the braking interactions to spat
changes of the velocity, compared to the sensitivity
changes of the density.

III. RESULTS

A. Homogeneous traffic

In homogeneous and stationary traffic, the GKT equatio
~27! and ~28! reduce tor5const. and relation~23! for the
equilibrium velocityVe(r). Notice thatVe(r) and thus the
equilibrium flowQe5rVe(r) is a function of the model pa
rametersV0 , T, andrmax, but does not depend ont andg.
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We determined the constants in relation~22! for the vari-
ance prefactorA(r) and the model parametersV0 , T, and
rmax, by fitting them to empirical data of the Dutch two-lan
motorway A9 from Haarlem to Amsterdam. The empiric
data are based on one-minute values for the numbernt of
passing vehicles, their average velocityVt , and velocity
variance u t , which were determined from single-vehic
data. The corresponding flow is then given byQt5nt/2 per
minute and lane, and the density per lane byQt /Vt . Such
sets of 1-min values were sampled over two periods fr
Monday to Friday~October 10, 1994 through October 1
1994 and October 31, 1994 through November 4, 1994! for
the right and left lanes at nine subsequent measuring c
sections~distributed over a stretch of 8.6-km length; see R
@39# for an illustration!. To obtain empirical quantities as
function of density, we averaged over all sets with a den
betweenr2Dr andr1Dr with Dr51 vehicle/km.

Figure 1~a! shows the variance prefactor Eq.~22! for the
fitted values

rc50.27rmax,

Dr50.05rmax,
~37!

A050.008,

DA52.5A0 .

Throughout the paper, we will use these values.
Figure 1~b! depicts the flow-density relation for the fitte

values ofV0 , T, and rmax given in Table I. These value
resulted from the systematic procedure described in S
III D. Both the empirical variance-density relation and t
flow-density relation are well reproduced by introducingone
fit function A(r) only. With a constant value forA, the sharp
increase of the variance prefactor at a density of about
vehicles/km and the sharp decrease of the velocity relate
it could not be obtained by variation ofV0 , T, and rmax.
Rather, this correlation is an intrinsic property of the mod
and follows from the proportionality of the braking intera
tion to the variance. Notice that the deviation of the assum
variance prefactor from the data at very low densities co
be easily removed by a more complicated functionA(r).
However, this correction would not impair the flow-dens
relation, because the interaction is negligible for these d
sities. For the same reason, the correction would not cha
the dynamics, justifying the choice of the simple function
dependence~22!.

In the plots of Fig. 2, the resulting equilibrium flowQe
5rVe(r) is plotted as a function of the density for variou
values of the model parametersV0 , T, andrmax. The solid
lines in plots 2~a!–2~d! show the result for the standard p
rameter set of Table I.

Figures 2~a! and 2~b! illustrate that, according to ou
model, traffic flow will increase with growing desired velo
ity V0 and with decreasing safe time headwayT, as expected
The desired velocityV0 mainly influences the low-densit
regime, whileT is relevant for high densities. This is als
underlined by Figs. 3~a! and 3~b!, which show the equilib-
rium velocity for the same parameters. As expected, a red
tion of V0 ~e.g., caused by a speed limit or an uphill gradie!
l

ss
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y
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0
to

l,

d
d

n-
ge
l

c-

influences traffic only at low densities. Since a reduction
V0 increases the stability of homogeneous traffic~see be-
low!, this has practical implications. A variable speed lim
which is active only above a certain density threshold, wo
increase the stability without reducing the capacity of t
road.

FIG. 2. Equilibrium flow-density relations of the GKT mode
Diagrams~a! through~c! show the variation with the model param
etersV0 , T, andrmax. In each diagram, the solid lines correspo
to the standard parameter set displayed in Table I. Diagram~d!
shows parameter combinations as one would expect for, e.g
increased percentage of trucks~V0580 km/h, T51.8 s, andrmax

5140 vehicles/km!, or a decreased percentage~V05140 km/h, T
51.4 s, andrmax5180 vehicles/km!.
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The changes of traffic flow resulting from variations
rmax are plausible as well@Fig. 2~c!#. Decreasingrmax or,
equivalently, increasing the average vehicle length~corre-
sponding to a higher percentage of trucks! reduces the maxi-
mum flow ~capacity! of the road. Of course, a higher propo
tion of trucks also leads to a lower desired velocity. The
combined effects are shown in Fig. 2~d!.

B. Stability of homogeneous traffic with respect
to a localized perturbation

The homogeneous and stationary equilibrium solut
~23! investigated in Sec. III A is not always stable. Here w
consider its stability with respect to a localized perturbat
in the initial conditions. Specifically, we assume a dipoleli
initial variation of the average densityr̄ according to

r~x,0!5 r̄1DrFcosh22S x2x0

w1 D
2

w1

w2 cosh22S x2x02Dx0

w2 D G , ~38!

as suggested in Ref.@40#. The positive and negative peak
are positioned atx0 and x01Dx0 , respectively, withDx0
51006.25 m, and they have the widthsw15201.25 m, and
w25805 m, respectively. The amplitudeDr of the perturba-
tion will be varied in the simulations. The initial flow
Q(x,0)5Qe„r(x,0)… is assumed to be in local equilibrium
everywhere. Our simulations showed that the specific sh
of the perturbation is not relevant. Moreover, localized p
turbations of a different form~e.g., a constant density plus

FIG. 3. Variation of the equilibrium velocity-density relation o
the GKT model with~a! the desired velocityV0 , and ~b! the safe
time headwayT. The other parameters have the standard val
displayed in Table I.
e

n

n

pe
-

Gaussian perturbation of the average velocity! were, after a
short time, transformed to dipolelike perturbations similar
that of Eq.~38!. The simulations were carried out with ex
plicit finite-difference methods@41#.

Figure 4 shows the spatiotemporal evolution of the init
perturbation~38! with Dr510 vehicles/km for various initial
densities. In Fig. 4~a!, it is shown that the perturbation dis
sipates if the traffic density is sufficiently low. When increa
ing the initial density, perturbations eventually lead to ins
bilities. Depending on the density, a single density clus
@cf. Fig. 4~b!#, or a cascade of traffic jams~i.e., stop-and-go
traffic! @Fig. 4~c!# is triggered. If one further increases th
density, we observed dipolelike structures similarly to tho
described in Ref.@24#. Finally, for densities above 50–5
vehicles/km, one again reaches a stable regime@Fig. 4~d!#.

s

FIG. 4. Spatiotemporal evolution of traffic on a unidirection
ring of circumference 10 km, starting with initially homogeneo
traffic ~of densityr̄! to which a localized perturbation of amplitud
Dr510 vehicles/km is added in accordance with Eq.~38!. ~a! is for
r̄515 vehicles/km~linearly stable!, ~b! and ~c! are for unstable
traffic ~r̄525 vehicles/km and 35 vehicles/km!, and~d! is for stable
congested traffic~55 vehicles/km!. The model parameters are give
by the standard set displayed in Table I.
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The underlying instability mechanism is intuitive@5#. In
perturbation~38!, the positive density peak~with a lower
velocity than in the homogeneous regions! is behind the
negative peak~with higher velocity!. This means that drivers
in the region upstream of the perturbation will approach
positive peak. If the traffic density is sufficiently low, th
vehicles can overtake by lane changing without braking
soon as they meet the tail of the perturbation. In addition,
perturbation dissolves by the above described effect of k
matic dispersion. As a result, homogeneous traffic is stab
low densities. For higher densities, however, a higher p
centage of drivers approaching the density peak must br
thereby locally increasing the density. The increased den
in turn, gives a positive feedback for further braking rea
tions. This feedback cycle continues until the resulting
locity is so low that the acceleration term compensates
braking effects. This defines the jammed densityr5r jam
with nonzero flow Q5Qe(r jam). Furthermore, it makes
plausible that homogeneous traffic of densityr̄>r jam is
stable again.

An important criterion for realistic traffic models is tha
the transition to these inhomogeneous states should be
teretic, corresponding to a first-order phase transition@5#.
This implies that, at least in some parameter range, the
sponse of the system to localized perturbation depends on
perturbation amplitude~bistability!. In terms of real traffic,
there are situations where traffic flow is metastable with
spect to small perturbations, but it breaks down if the per
bations are sufficiently large. Figure 5 shows that we fou
two ranges of densities,r̄P@rc1 ,rc2# and r̄P@rc3 ,rc4#,
where the transition is bistable. For large perturbation am
tudes, the system develops to a localized-cluster stat
r̄P@rc1 ,rc2#, or to a dipolelike state ifr̄P@rc3 ,rc4#, while
it relaxes back to the equilibrium state for smaller pertur
tions. Between these ranges, there is a regionr̄
P@rc2 ,rc3#, where homogeneous traffic is linearly unstab
giving rise to cascades of density clusters~‘‘stop-and-go
waves’’!. For r,rc1 and r.rc4 , traffic is stable for arbi-
trary perturbations.

In Fig. 5~a!, we plot the minimum and maximum densitie
rmin and r jam that resulted from simulations of traffic on
circular road after a dynamic steady state has been reac
A large difference (r jam2rmin) corresponds to localized
cluster or stop-and-go states, while (r jam2rmin)'0 is the
signature of the homogeneous state. At a perturbation am
tude of one vehicle per km~dashed lines!, the perturba-
tion can be considered to be linear, while atDr
520 vehicles/km~dotted lines!, the perturbation amplitude
reaches the order of the homogeneous densities defining
maximum perturbation. So from the plot we can determ
the four critical densities. Notice that the densitiesr jam and
rmin of the developed nonlinear state depend neither on
initial density nor on the amplitude of the perturbation. F
ure 6 shows the basins of attraction of the two traffic state
the phase space spanned byr̄ andDr. For values of (r̄,Dr)
corresponding to points inside the two curves, the fi
steady state consists of density clusters or stop-and
waves. Otherwise, the final state is that of homogene
equilibrium.

Now we will show that the stability of the model is de
termined mainly by the relaxation timet and by the antici-
e

s
e
e-
at
r-
e,
y,
-
-
e

ys-

e-
the

-
r-
d

i-
if

-

,

ed.

li-

the
e

e
-
in

l
go
s

pation factorg. Since the flow-density relation does not d
pend on these parameters, this means that one can cali
the stability and the flow rates independently. Figures 5~b!
and 6 show that an increased value oft leads both to an
increased range of instability and to increased amplitu
(r jam2rmin) of the nonlinear state. Ift exceeds values o
about 60 s, the density exceeds the maximum density.rmax
in the course of the simulations, which is a signature of
cidents. Fort<12 s, the unstable and metastable regio
vanish altogether, and the system is globally stable for
densities and all perturbation amplitudes. For a fixed va
g51.2 but otherwise arbitrary model parameters, global s
bility is reached, if the dimensionless parameterV08
5rmaxV0t of the scaled equations~32! and ~33! satisfiesV08
<Vc8559. Further simulations showed that the stability
traffic described by the GKT model also increases with
creasingg. Both the critical relaxation time where acciden
occur and the critical valueVc8 for global stability increase.
This is plausible sinceg describes the anticipation of futur
velocity changes.

FIG. 5. Stability diagram for perturbations of homogeneous tr
fic of form ~38! in a ring of circumference 10 km. Both diagram
show the maximum and minimum densitiesr jam and rout as func-
tions of the average densityr̄, measured after a dynamical equilib
rium was reached. The unstable traffic regime corresponds to
density range where the jam amplitude (r jam2rout) is large
~rectanglelike-shaped regions!. Diagram~a! shows the dependenc
of the stability diagram on the perturbation amplitudeDr. One can
clearly see two density ranges@rc1 ,rc2# with rc1

521 vehicles/km andrc2524 vehicles/km, and@rc3 ,rc4# with
rc3551 vehicles/km andrc4555 vehicles/km, where traffic is non
linearly stable, i.e., stable for small perturbations, but unstable
large perturbations. In the range@rc2 ,rc3#, homogenous traffic is
unstable for arbitrary perturbation amplitudes. Diagram~b! shows
the stability diagram for various relaxation timest and a perturba-
tion amplitude ofDr51 vehicle/km.
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It turned out that the qualitative difference between
nonlinear state of Fig. 4~b!, where only one cluster is see
and that of Fig. 4~c!, where a cascade of stop-and-go wav
appeared, can be understood by the linearly unstable
metastable density ranges discussed above. In both c
there is a region in the wake of the first cluster, where
density is lower, and the velocity is higher than in the hom
geneous region downstream. This gives rise to a transi
layer between these regions serving as a small perturba
@5#. In Fig. 4~b!, the system is metastable, and this pertur
tion is too small to induce a new density cluster. In Fig. 4~c!,
the system is linearly unstable and the transition layer t
gers a new cluster. This cluster, in turn, gives rise to a n
transition layer eventually leading to a cascade of st
and-go waves.

Another remarkable feature of Fig. 4~c! is that the width
of the first~upstream! stop-and-go wave is growing while th
other waves remain narrow. The width of the cluster in F
4~b! increases as well, but more slowly. This can be
plained by observing that the growth rate of the width
given by the difference of the group velocitiesvg,up5(Qjam
2Qin)/(r jam2r in) andvg5(Qout2Qjam)/(rout2r jam) of the
upstream and downstream fronts~Fig. 7!. For the densityr̄
525 vehicles/km corresponding to Fig. 4~b!, the difference
is small, while forr̄535 vehicles/km@Fig. 4~c!#, it is large.
In all subsequent clusters of Fig. 4~c!, we haveQin5Qout and
rin5rout, so they do not grow.

It is required for any realistic traffic model that the dens
r jam inside localized clusters and the traffic in the regi
downstream of it is independent of the inflow@5#. This im-
plies that the group velocityvg should be constant. The up
per curves in Fig. 5 for the jam density, the dashed line
Fig. 7 forvg , and the dashed line of Fig. 8 forQout show that
the GKT model essentially fulfills this requirement.

Another frequently discussed problem is to what ext
equilibrium flow-density relations of traffic models can b
calibrated by nonequilibrium empirical data. In Fig. 9 w
simulate the measurement of traffic data by recording
velocity and density at several fixed locations~‘‘measuring
cross sections’’! over a certain period of time. To incorpora
the distribution of densities encountered in real traffic,

FIG. 6. Critical perturbation amplitudesDrc of localized pertur-
bations in the metastable~nonlinearly unstable! density regime for
various values oft. The critical amplitude is the minimal amplitud
that can cause traffic jam formation. Smaller amplitudes are dam
out in the course of time. Between the two metastable density
gions arbitrarily small perturbation amplitudes will cause the f
mation of traffic jams. At low and high densities, inhomogeneit
of traffic flow tend to disappear.
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run simulations for various densities. In each run, the sim
lation time was proportional to the occurrence probability
traffic densities in the course of the day, for which we a
sumed a linear decrease from a maximum value atr̄50 to
zero for r̄570 vehicles/km. The dots in Fig. 9 show th
flows and densities ‘‘measured’’ at the cross sections for
simulation runs put together. In addition, the solid line
Fig. 8 shows the dynamic average of the flow for runs a
given density. Both figures show that, in the case of unsta
traffic, the flow of the ‘‘measured’’ dynamic flow-densit
relation~broken line! is considerably lower than the equilib
rium flow. From this it follows that, in regions of unstab
traffic, one cannot calibrate equilibrium flows of traffic mo
els to empirical flow-density relations.

C. Fronts between congested and free traffic

The realistic description of shock fronts in traffic is
particularly difficult problem, as pointed out in Ref.@42#.

ed
e-
-
s

FIG. 7. ~a! Group velocity of the upstream front~solid! and
downstream front~dashed! of the first stop-and-go wave displaye
in Fig. 4. The propagation of the fronts is calculated during a
riod, where the density of traffic jams does not grow anymoret
.4 min), but the dynamics does not yet depend on the bound
conditions (t,15 min). Notice that the propagation velocity at lo
densities is positive, but slower than the average vehicle velocity
the instability region, the negative propagation velocity of t
downstream front depends only weakly on the initial density, a
its magnitude is well compatible with empirical data. The larg
propagation velocity of the upstream front comes from the grow
jam length.~b! Group velocity of the upstream and downstrea
fronts on a circular road. Here the length of traffic jams stabiliz
after some time, and their upstream fronts move with the sa
velocities as their downstream fronts. The magnitude of the ini
perturbation (Dr510 vehicles/km) has been chosen larger than
diagram ~a! (Dr51 vehicle/km), resulting in a larger region o
negative group velocities.
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Therefore, in this section we will investigate how fronts b
tween two different states of traffic, especially between f
and congested traffic, evolve in the GKT model. We mo
such fronts by initial conditions containing discontinuities
the fieldsr andV. In particular, we consider shocks atxshock
between two homogeneous regions with densitiesr1 andr2
at the left ~upstream! and right ~downstream! sides. Initial
conditions withr1.r2 include situations of dissolving jams
The extreme caser15rmax corresponds to vehicles startin
from a standstill after a road blockage is removed. Init
conditions withr1,r2 include situations where free traffi
flow meets a queue of nearly standing vehicles. The sim
tions were carried out with the standard parameter se
Table I. At the upstream boundary (x50 km), we chose
the fixed ~Dirichlet! boundary conditionsr(0,t)5r1 and
Q(0,t)5Qe(r1) to model a constant inflow consiste
with the initial conditions. At the downstream bounda

FIG. 8. Characteristic flows in the fully developed stop-and-
traffic corresponding to Fig. 5~b!, which results on a circular road
from locally perturbed traffic of average densityr̄. Depicted are, as
a function ofr̄, the flowsQjam in the jammed regions, the outflow
Qout from jams, and the average flows. For comparison, the e
librium flow Qe5rVe with Ve from Eq. ~23! is also shown. Notice
that, in the unstable range, the averagedynamicflow is lower than
the equilibrium flow.
-
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l
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of

(xmax540 km), we simulated an unperturbed outflow by t
homogeneous von Neumann conditions]xr(xmax,t)
5]xQ(xmax,t)50. Figures 10~a! and 10~b! show the spatio
temporal development of the density and the flow forr1
,r2 ~upstream jam fronts!.

One can see that the shape of the backward moving f
does not change in time@cf. Fig. 10~a!#, and that there is no
region of negative velocity@Fig. 10~b!#. This is achieved by
the nonlocal interaction term in the velocity equation, wh
a viscosity term (;]2V/]x2) would make the front smoothe
with increasing time.

Figures 11~a! and 11~b! show the spatiotemporal evolu
tion of the density and flow for downstream fronts withr1
@r2 . This corresponds to a dissolving jam~for example,
after an accident has been cleared! with an outflow to a
nearly empty road section. Due to the kinematic dispers
term (1/r)](ru)/]x in the velocity equation, the forward

i-

FIG. 9. Simulated flow-density relation as superposition of d
obtained at five equally distributed ‘‘detectors’’ on a circular ro
of length 10 km~dots!. In order to take into account the variation o
traffic densities in the course of the day, the average densityr̄ was
varied in the range~10 vehicles/km, 70 vehicles/km! in steps of 2
veh/km. The total duration of simulations for the homogeneous d
sity r̄ was 70 min@12 r̄/(70 vehicles/km)#. Note that, in the un-
stable regime, the dynamical flow-density values tend to lie be
the equilibrium relation~dashed line!.

FIG. 10. Simulation of an upstream front with initial densities
r1515 vehicles/km andr25140 vehicles/km. Shown is the spa
tiotemporal evolution of~a! the density, and~b! the flow. In~b!, the
direction of the space and time axes is reversed for illustra
reasons.
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moving front is somewhat smoothed in the course of tim
The finite velocity variance implies that, after some time,
faster cars are found in a wider distance from the jam fro

As a remarkable fact it should be mentioned that,
though the equilibrium point of the outflow„rout,Qe(rout)…
is the result of a dynamic process, the outflowQout is nearly
constant over a wide range ofr1 @cf. Fig. 12~a!#. This agrees
with empirical observations where it has been found that
outflow of very different forms of congested traffic~includ-
ing the dissolution of queued city traffic after a traffic lig
turns green! is nearly a ‘‘constant of traffic’’@8,43,44#. This
generalizes the above mentioned requirement of a cons
outflow from clusters~whose jam density is determined b
the dynamics! to forms of congestion that are a result of t
initial and boundary conditions.

However, the outflowQout varies with the model param
eters. It increases with growingg @cf. Fig. 12~b!#, because an
acceleration tendency is already recognized in a larger
tance from the jam front. The outflow decreases drastic
with increasingT @cf. Fig. 12~c!#, becauseT determines the
time headway between two following vehicles or, equiv
lently, the inverse of the flow. Furthermore, the outflow
diminished with increasedt @cf. Fig. 12~d!#, because in-
creased values oft correspond to lower accelerations a
thus to more inert vehicles.

D. Method of parameter calibration

While the model parametersV0 , T, andrmax influence the
equilibrium flow-density~or velocity-density! relation ~Figs.
2 and 3!, the parameterst ~Fig. 5! andg influence only the
stability behavior. This enables an effective calibration of
GKT model to concrete traffic situations.

First, V0 is determined as the low-density limit of th
experimental velocity-density relation~which, in this limit, is
also the equilibrium relation!, andrmax is determined by the
average length of the vehicles and assuming a reason
bumper-to-bumper distance of, e.g., 1.5 m in standing tra
ThenT is calibrated by the observed maximum flows, by t

FIG. 11. Simulations of downstream fronts wit
r jam5140 vehicles/km. Shown is the spatiotemporal developm
of ~a! the density, and~b! the flow. Free boundary conditions wer
used on both sides.
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outflows from stop-and-go waves, or by the flow resulti
from standing traffic after a red light turns green or an o
stacle is removed@8,43#. Afterwards, one calibratest andg
by the observed stability behavior~Fig. 5!, and by the shape
and width of the downstream and upstream fronts connec
free and congested states~Figs. 10 and 11!. Sincet and g
weakly influence the flows@Figs. 12~d! and 12~b!#, the cali-
bration of T, t, and g is repeated recursively until conve
gence is obtained.

Applying this procedure to the single-vehicle data of t
Dutch motorway A9 leads to the parameter set shown
Table I. Notice that, because of their immediate intuiti
meaning, the plausible range of values for the model par
eters is rather restricted. One can argue that reasonable
headways are in the rangeTP@1.0 s,2.5 s#, and that initial
accelerations amax5V0 /t are in the range amax
P@1 m/s2,4 m/s2#, corresponding~e.g., forV05144 km/h! to

t

FIG. 12. OutflowQout from a congested traffic state of densi
r1 depending on~a! r1 , ~b! g, ~c! T, and~d! t. The simulated traffic
situation is that of Fig. 11. The outflows were determined afte
transient time of 30 min.
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tP@10 s,40 s#. Finally, the minimum anticipation of traffic
is to the car in front, implyingg>1.

IV. SUMMARY AND CONCLUSIONS

We have proposed a macroscopic gas-kinetic-based tr
model ~GKT model! that was derived from a microscop
model of vehicle dynamics. The assumed fluctuations of
hicle acceleration implied a velocity distribution of finit
variance which is governed by a kinetic equation related
that used in kinetic gas theory. In the resulting GKT equ
tions, the velocity variance enters both the braking inter
tions and the smoothing effect of the ‘‘kinematic dispe
sion.’’

In contrast to gas-kinetic-based models proposed ea
@18,21#, we could now derive a correlation factor reflectin
the increased interaction rate of vehicles at high densities
simple and plausible arguments. Furthermore, we repla
the dynamic variance by a ‘‘constitutive relation’’ obtaine
from single-vehicle data, thereby considerably simplifyi
the description. The resulting relation of the flow as a fun
tion of the density agreed well with empirical data. Since
form of this function is determined by the constitutive re
tion, this supports the assumption of the model that brak
interactions are mainly caused by a finite velocity varian

Because of its derivation from physical assumptions,
model parameters of the GKT model have an intuitive me
ing, and can be either directly measured or calibrated to
traffic data. It is straighforward to model the effects of, e.
speed limits, varying road conditions~e.g., gradients!, or dif-
ferent driving behaviors. Moreover, we proposed a syste
atic calibration procedure.

In contrast to other macroscopic traffic models, the G
model is nonlocal. While the nonlocality has similar smoo
ing effects to those of a diffusion or viscosity term, it leads
a more favorable numerical stability behavior. The mo
belongs to the class of effective one-lane models, so m
lane aspects are treated only in a global way. Nevertheles
is straightforward to include ramps@26#, or lane blockages
~e.g., due to road works or accidents!.

Investigations of instabilities arising from a localized pe
turbation of homogeneous traffic showed qualitatively
same scenario as found for the model of Kerner a
Konhäuser@5,24#. For sufficiently high values oft, homoge-
neous traffic at intermediate densities becomes unstable
respect to perturbations, leading to nonlinear states like
calized clusters, stop-and-go waves, or dipolelike structu
fic
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while homogeneous traffic flow is stable for high and lo
densities. The GKT model satisfies two requirements wh
should hold for any realistic model@5#. First, the transition to
localized clusters is hysteretic. Second, the outflow region
the clusters is nearly independent of the homogeneous
sity. In contrast to most other models, however, the tra
flow within the clusters is finite and can be influenced by t
model parameterst and g. This enables the simulation o
‘‘synchronized’’ traffic states@26# that turned out to be the
most frequent form of congested traffic@1#.

Only for high densities and forg51 can the interaction
term of the microscopic equations~4! underlying the GKT
model be written in terms of a simple car-following mode
For this case, we performed simulations with a smooth
version of Eq.~4! ~containing no abrupt velocity changes
the interaction term!, and found a nearly quantitative agre
ment in describing collective states like clusters or sto
and-go waves.

The high numerical stability of the GKT model also a
lowed us to treat realistic boundary conditions~instead of the
periodic boundary conditions used in most previous publi
tions!, and to simulate discontinuous fronts between hom
geneous low and high-density states. Such fronts corresp
to the formation or dissolution of jammed traffic that
caused by initial or boundary conditions rather than by d
namic instabilities.

Remarkably, the outflowQout from jammed regions was
nearly the same as the outflow from localized clusters,
gardless of the density of the jams, including even stand
traffic ~related, e.g., to the dissolution of a queue behin
traffic light turning green!. The observation that the outflow
from arbitrary kinds of congested traffic is a ‘‘universal
constant of traffic dynamics, and also its numerical value
about 1800 vehicles per hour, agrees well with observati
of real traffic @8,43,44#. In addition to the constant grou
velocity of localized clusters, this universal outflow can
considered as an additional requirement for realistic tra
models.
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